Few and Different: Detecting Examinees With Preknowledge Using Extended Isolation Forests.

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL
Nate R Smith, Lisa A Keller, Richard A Feinberg, Chunyan Liu
{"title":"Few and Different: Detecting Examinees With Preknowledge Using Extended Isolation Forests.","authors":"Nate R Smith, Lisa A Keller, Richard A Feinberg, Chunyan Liu","doi":"10.1177/01466216251320403","DOIUrl":null,"url":null,"abstract":"<p><p>Item preknowledge refers to the case where examinees have advanced knowledge of test material prior to taking the examination. When examinees have item preknowledge, the scores that result from those item responses are not true reflections of the examinee's proficiency. Further, this contamination in the data also has an impact on the item parameter estimates and therefore has an impact on scores for all examinees, regardless of whether they had prior knowledge. To ensure the validity of test scores, it is essential to identify both issues: compromised items (CIs) and examinees with preknowledge (EWPs). In some cases, the CIs are known, and the task is reduced to determining the EWPs. However, due to the potential threat to validity, it is critical for high-stakes testing programs to have a process for routinely monitoring for evidence of EWPs, often when CIs are unknown. Further, even knowing that specific items may have been compromised does not guarantee that any examinees had prior access to those items, or that those examinees that did have prior access know how to effectively use the preknowledge. Therefore, this paper attempts to use response behavior to identify item preknowledge without knowledge of which items may or may not have been compromised. While most research in this area has relied on traditional psychometric models, we investigate the utility of an unsupervised machine learning algorithm, extended isolation forest (EIF), to detect EWPs. Similar to previous research, the response behavior being analyzed is response time (RT) and response accuracy (RA).</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":" ","pages":"01466216251320403"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843570/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216251320403","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Item preknowledge refers to the case where examinees have advanced knowledge of test material prior to taking the examination. When examinees have item preknowledge, the scores that result from those item responses are not true reflections of the examinee's proficiency. Further, this contamination in the data also has an impact on the item parameter estimates and therefore has an impact on scores for all examinees, regardless of whether they had prior knowledge. To ensure the validity of test scores, it is essential to identify both issues: compromised items (CIs) and examinees with preknowledge (EWPs). In some cases, the CIs are known, and the task is reduced to determining the EWPs. However, due to the potential threat to validity, it is critical for high-stakes testing programs to have a process for routinely monitoring for evidence of EWPs, often when CIs are unknown. Further, even knowing that specific items may have been compromised does not guarantee that any examinees had prior access to those items, or that those examinees that did have prior access know how to effectively use the preknowledge. Therefore, this paper attempts to use response behavior to identify item preknowledge without knowledge of which items may or may not have been compromised. While most research in this area has relied on traditional psychometric models, we investigate the utility of an unsupervised machine learning algorithm, extended isolation forest (EIF), to detect EWPs. Similar to previous research, the response behavior being analyzed is response time (RT) and response accuracy (RA).

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信