{"title":"Self-calibrating multiplexed microneedle electrode array for continuous mapping of subcutaneous multi-analytes in diabetes.","authors":"Xiangling Li, Shantao Zheng, Mengyi He, Xinshuo Huang, Cheng Yang, Jingshan Mo, Jingbo Yang, Chengduan Yang, Huijiuan Chen, Xi Xie","doi":"10.1016/j.xinn.2024.100781","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring multiplexed biochemical markers is beneficial for the comprehensive evaluation of diabetes-associated complications. Techniques for multiplexed analyses in interstitial fluids have often been restricted by the difficulties of electrode materials in accurately detecting chemicals in complex subcutaneous spaces. In particular, the signal stability of enzyme-based sensing electrodes often inevitably decreases due to enzyme degradation or interference <i>in vivo</i>. In this study, we developed a self-calibrating multiplexed microneedle (MN) electrode array (SC-MMNEA) capable of continuous, real-time monitoring of multiple types of bioanalytes (glucose, cholesterol, uric acid, lactate, reactive oxygen species [ROSs], Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, and pH) in the subcutaneous space. Each type of analyte was detected by a discrete MN electrode assembled in an integrated array with single-MN resolution. Moreover, this device utilized an MN-delivery-mediated self-calibration technique to address the inherent problem of decreased accuracy of implantable electrodes caused by long-term tissue variation and enzyme degradation, and this technique might increase the reliability of the MN sensors. Our results indicated that SC-MMNEA could provide real-time monitoring of multiplexed analyte concentrations in a rat model with good accuracy, especially after self-calibration. SC-MMNEA has the advantages of <i>in situ</i> and minimally invasive monitoring of physiological states and the potential to promote wearable devices for long-term monitoring of chemical species <i>in vivo</i>.</p>","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"6 2","pages":"100781"},"PeriodicalIF":33.2000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846035/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Innovation","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1016/j.xinn.2024.100781","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/3 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring multiplexed biochemical markers is beneficial for the comprehensive evaluation of diabetes-associated complications. Techniques for multiplexed analyses in interstitial fluids have often been restricted by the difficulties of electrode materials in accurately detecting chemicals in complex subcutaneous spaces. In particular, the signal stability of enzyme-based sensing electrodes often inevitably decreases due to enzyme degradation or interference in vivo. In this study, we developed a self-calibrating multiplexed microneedle (MN) electrode array (SC-MMNEA) capable of continuous, real-time monitoring of multiple types of bioanalytes (glucose, cholesterol, uric acid, lactate, reactive oxygen species [ROSs], Na+, K+, Ca2+, and pH) in the subcutaneous space. Each type of analyte was detected by a discrete MN electrode assembled in an integrated array with single-MN resolution. Moreover, this device utilized an MN-delivery-mediated self-calibration technique to address the inherent problem of decreased accuracy of implantable electrodes caused by long-term tissue variation and enzyme degradation, and this technique might increase the reliability of the MN sensors. Our results indicated that SC-MMNEA could provide real-time monitoring of multiplexed analyte concentrations in a rat model with good accuracy, especially after self-calibration. SC-MMNEA has the advantages of in situ and minimally invasive monitoring of physiological states and the potential to promote wearable devices for long-term monitoring of chemical species in vivo.
期刊介绍:
The Innovation is an interdisciplinary journal that aims to promote scientific application. It publishes cutting-edge research and high-quality reviews in various scientific disciplines, including physics, chemistry, materials, nanotechnology, biology, translational medicine, geoscience, and engineering. The journal adheres to the peer review and publishing standards of Cell Press journals.
The Innovation is committed to serving scientists and the public. It aims to publish significant advances promptly and provides a transparent exchange platform. The journal also strives to efficiently promote the translation from scientific discovery to technological achievements and rapidly disseminate scientific findings worldwide.
Indexed in the following databases, The Innovation has visibility in Scopus, Directory of Open Access Journals (DOAJ), Web of Science, Emerging Sources Citation Index (ESCI), PubMed Central, Compendex (previously Ei index), INSPEC, and CABI A&I.