Correlations Between Morpho-structural Properties of the Brain and Cognitive and Motor Deficits in Individuals with Traumatic Brain Injury.

IF 1.8 Q3 CLINICAL NEUROLOGY
Neurotrauma reports Pub Date : 2025-01-24 eCollection Date: 2025-01-01 DOI:10.1089/neur.2024.0091
Alaleh Alivar, Soha Saleh, Michael Glassen, Easter S Suviseshamuthu, Vikram Shenoy Handiru, Didier Allexandre, Guang H Yue
{"title":"Correlations Between Morpho-structural Properties of the Brain and Cognitive and Motor Deficits in Individuals with Traumatic Brain Injury.","authors":"Alaleh Alivar, Soha Saleh, Michael Glassen, Easter S Suviseshamuthu, Vikram Shenoy Handiru, Didier Allexandre, Guang H Yue","doi":"10.1089/neur.2024.0091","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injury (TBI) results in changes in brain networks followed by long-lasting behavioral and social impairments. This study explores the relationship between neurobehavioral as well as physical function deficits and structural changes in brain white matter (WM) and gray matter (GM) in individuals with TBI by evaluating morphometric magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) data. The structural MRI-based fractal analysis has emerged as a promising new approach to measure the morphology of the WM and GM. While DTI metrics reflect the microstructural properties of WM, the fractal dimension (FD) is regarded as a measure of morphometric complexity of the system, thus providing complementary information on the brain structure. This study included 10 individuals having moderate-to-severe TBI with balance/postural control deficits and 8 healthy controls. The network-based GM and WM morphologies were measured using FD and structural connectivity metrics, and fractional anisotropy (FA) was assessed using DTI in major WM tracts. The associations between brain structural (FA and FD) measures and a number of neuropsychological assessment and sensorimotor function outcomes were evaluated using partial least square correlation analysis. Our findings showed that the complexity in GM of default mode network, salience network, sensorimotor network, and frontoparietal network is positively correlated with the performance in cognitive and balance outcomes in patients with TBI. On the contrary, in DTI connectivity measures, only few regions including corona radiata, inferior longitudinal fasciculus, and middle cerebellar peduncle were strongly correlated with the behavioral outcomes in the TBI group. Our study suggests that the brain structure complexity measured by FD is a promising and complementary approach to DTI for potentially serving as a biomarker of cognitive and sensorimotor functions in TBI population.</p>","PeriodicalId":74300,"journal":{"name":"Neurotrauma reports","volume":"6 1","pages":"68-81"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839535/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotrauma reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/neur.2024.0091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Traumatic brain injury (TBI) results in changes in brain networks followed by long-lasting behavioral and social impairments. This study explores the relationship between neurobehavioral as well as physical function deficits and structural changes in brain white matter (WM) and gray matter (GM) in individuals with TBI by evaluating morphometric magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) data. The structural MRI-based fractal analysis has emerged as a promising new approach to measure the morphology of the WM and GM. While DTI metrics reflect the microstructural properties of WM, the fractal dimension (FD) is regarded as a measure of morphometric complexity of the system, thus providing complementary information on the brain structure. This study included 10 individuals having moderate-to-severe TBI with balance/postural control deficits and 8 healthy controls. The network-based GM and WM morphologies were measured using FD and structural connectivity metrics, and fractional anisotropy (FA) was assessed using DTI in major WM tracts. The associations between brain structural (FA and FD) measures and a number of neuropsychological assessment and sensorimotor function outcomes were evaluated using partial least square correlation analysis. Our findings showed that the complexity in GM of default mode network, salience network, sensorimotor network, and frontoparietal network is positively correlated with the performance in cognitive and balance outcomes in patients with TBI. On the contrary, in DTI connectivity measures, only few regions including corona radiata, inferior longitudinal fasciculus, and middle cerebellar peduncle were strongly correlated with the behavioral outcomes in the TBI group. Our study suggests that the brain structure complexity measured by FD is a promising and complementary approach to DTI for potentially serving as a biomarker of cognitive and sensorimotor functions in TBI population.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信