Advanced echocardiography and cluster analysis to identify secondary tricuspid regurgitation phenogroups at different risk.

IF 7.2 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Luigi P Badano, Marco Penso, Michele Tomaselli, Kyu Kim, Alexandra Clement, Noela Radu, Geu-Ru Hong, Diana R Hădăreanu, Alexandra Buta, Caterina Delcea, Samantha Fisicaro, Gianfranco Parati, Chi Young Shim, Denisa Muraru
{"title":"Advanced echocardiography and cluster analysis to identify secondary tricuspid regurgitation phenogroups at different risk.","authors":"Luigi P Badano, Marco Penso, Michele Tomaselli, Kyu Kim, Alexandra Clement, Noela Radu, Geu-Ru Hong, Diana R Hădăreanu, Alexandra Buta, Caterina Delcea, Samantha Fisicaro, Gianfranco Parati, Chi Young Shim, Denisa Muraru","doi":"10.1016/j.rec.2025.02.004","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction and objectives: </strong>Significant secondary tricuspid regurgitation (STR) is associated with poor prognosis, but its heterogeneity makes predicting patient outcomes challenging. Our objective was to identify STR prognostic phenogroups.</p><p><strong>Methods: </strong>We analyzed 758 patients with moderate-to-severe STR: 558 (74±14 years, 55% women) in the derivation cohort and 200 (73±12 years, 60% women) in the external validation cohort. The primary endpoint was a composite of heart failure hospitalization and all-cause mortality.</p><p><strong>Results: </strong>We identified 3 phenogroups. The low-risk phenogroup (2-year event-free survival 80%, 95%CI, 74%-87%) had moderate STR, preserved right ventricular (RV) size and function, and a moderately dilated but normally functioning right atrium. The intermediate-risk phenogroup (HR, 2.20; 95%CI, 1.44-3.37; P<.001) included older patients with severe STR, and a mildly dilated but uncoupled RV. The high-risk phenogroup (HR, 4.67; 95%CI, 3.20-6.82; P<.001) included younger patients with massive-to-torrential tricuspid regurgitation, as well as severely dilated and dysfunctional RV and right atrium. Multivariable analysis confirmed the clustering as independently associated with the composite endpoint (HR, 1.40; 95%CI, 1.13-1.70; P=.002). A supervised machine learning model, developed to assist clinicians in assigning patients to the 3 phenogroups, demonstrated excellent performance both in the derivation cohort (accuracy=0.91, precision=0.91, recall=0.91, and F1 score=0.91) and in the validation cohort (accuracy=0.80, precision=0.78, recall=0.78, and F1 score=0.77).</p><p><strong>Conclusions: </strong>The unsupervised cluster analysis identified 3 risk phenogroups, which could assist clinicians in developing more personalized treatment and follow-up strategies for STR patients.</p>","PeriodicalId":38430,"journal":{"name":"Revista española de cardiología (English ed.)","volume":" ","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista española de cardiología (English ed.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.rec.2025.02.004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction and objectives: Significant secondary tricuspid regurgitation (STR) is associated with poor prognosis, but its heterogeneity makes predicting patient outcomes challenging. Our objective was to identify STR prognostic phenogroups.

Methods: We analyzed 758 patients with moderate-to-severe STR: 558 (74±14 years, 55% women) in the derivation cohort and 200 (73±12 years, 60% women) in the external validation cohort. The primary endpoint was a composite of heart failure hospitalization and all-cause mortality.

Results: We identified 3 phenogroups. The low-risk phenogroup (2-year event-free survival 80%, 95%CI, 74%-87%) had moderate STR, preserved right ventricular (RV) size and function, and a moderately dilated but normally functioning right atrium. The intermediate-risk phenogroup (HR, 2.20; 95%CI, 1.44-3.37; P<.001) included older patients with severe STR, and a mildly dilated but uncoupled RV. The high-risk phenogroup (HR, 4.67; 95%CI, 3.20-6.82; P<.001) included younger patients with massive-to-torrential tricuspid regurgitation, as well as severely dilated and dysfunctional RV and right atrium. Multivariable analysis confirmed the clustering as independently associated with the composite endpoint (HR, 1.40; 95%CI, 1.13-1.70; P=.002). A supervised machine learning model, developed to assist clinicians in assigning patients to the 3 phenogroups, demonstrated excellent performance both in the derivation cohort (accuracy=0.91, precision=0.91, recall=0.91, and F1 score=0.91) and in the validation cohort (accuracy=0.80, precision=0.78, recall=0.78, and F1 score=0.77).

Conclusions: The unsupervised cluster analysis identified 3 risk phenogroups, which could assist clinicians in developing more personalized treatment and follow-up strategies for STR patients.

先进的超声心动图和聚类分析识别不同风险的继发性三尖瓣反流表型。
简介和目的:明显的继发性三尖瓣反流(STR)与不良预后相关,但其异质性使得预测患者预后具有挑战性。我们的目的是确定STR预后表型。方法:我们分析了758例中重度STR患者:衍生队列558例(74±14岁,55%为女性),外部验证队列200例(73±12岁,60%为女性)。主要终点是心力衰竭住院和全因死亡率的综合。结果:我们鉴定出3个表型组。低风险表型组(2年无事件生存率80%,95%CI, 74%-87%)有中度STR,保留右心室(RV)大小和功能,中度扩张但功能正常的右心房。中危表型组(HR, 2.20;95%置信区间,1.44 - -3.37;P < 0.001)包括严重STR的老年患者和轻度扩张但不耦合的RV。高危表型组(HR, 4.67;95%置信区间,3.20 - -6.82;P < 0.001)包括三尖瓣严重到剧烈反流的年轻患者,以及严重扩张和功能不全的右心室和右心房。多变量分析证实聚类与复合终点独立相关(HR, 1.40;95%置信区间,1.13 - -1.70;p = .002)。为了帮助临床医生将患者分配到3个表型组,开发了一个监督机器学习模型,该模型在衍生队列(准确性= 0.91,精度= 0.91,召回率= 0.91,F1评分= 0.91)和验证队列(准确性= 0.80,精度= 0.78,召回率= 0.78,F1评分= 0.77)中都表现出色。结论:无监督聚类分析确定了3个风险表型,可帮助临床医生为STR患者制定更个性化的治疗和随访策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
219
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信