{"title":"Exerkines: Potential regulators of ferroptosis.","authors":"Min Jia, Fengxing Li, Tong Wu, Ning Chen","doi":"10.1016/j.jshs.2025.101032","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis is a programmed cell death, and its mechanism involves multiple metabolic pathways, such as iron and lipid metabolism, and redox homeostasis. Exerkines are important mediators that optimize cellular homeostasis and maintain physiological health during exercise stimulation. This article comprehensively examines the mechanisms and regulatory networks for governing ferroptosis and summarizes the impact of exercise and exerkines on ferroptosis under varying load intensities and disease contexts. Notably, despite its significant efficacy and minimal side effects, the therapeutic and prognostic potential of exercise in ferroptosis-related diseases remains largely unexplored. This article, by summarizing recent progresses in the regulation of exerkines-mediated ferroptosis, could further uncover the preventive or alleviative mechanisms of some diseases upon exercise interventions, which will be beneficial to design exercise interventional strategies for alleviating disease progression through the regulation of ferroptosis.</p>","PeriodicalId":48897,"journal":{"name":"Journal of Sport and Health Science","volume":" ","pages":"101032"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sport and Health Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jshs.2025.101032","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroptosis is a programmed cell death, and its mechanism involves multiple metabolic pathways, such as iron and lipid metabolism, and redox homeostasis. Exerkines are important mediators that optimize cellular homeostasis and maintain physiological health during exercise stimulation. This article comprehensively examines the mechanisms and regulatory networks for governing ferroptosis and summarizes the impact of exercise and exerkines on ferroptosis under varying load intensities and disease contexts. Notably, despite its significant efficacy and minimal side effects, the therapeutic and prognostic potential of exercise in ferroptosis-related diseases remains largely unexplored. This article, by summarizing recent progresses in the regulation of exerkines-mediated ferroptosis, could further uncover the preventive or alleviative mechanisms of some diseases upon exercise interventions, which will be beneficial to design exercise interventional strategies for alleviating disease progression through the regulation of ferroptosis.
期刊介绍:
The Journal of Sport and Health Science (JSHS) is an international, multidisciplinary journal that aims to advance the fields of sport, exercise, physical activity, and health sciences. Published by Elsevier B.V. on behalf of Shanghai University of Sport, JSHS is dedicated to promoting original and impactful research, as well as topical reviews, editorials, opinions, and commentary papers.
With a focus on physical and mental health, injury and disease prevention, traditional Chinese exercise, and human performance, JSHS offers a platform for scholars and researchers to share their findings and contribute to the advancement of these fields. Our journal is peer-reviewed, ensuring that all published works meet the highest academic standards.
Supported by a carefully selected international editorial board, JSHS upholds impeccable integrity and provides an efficient publication platform. We invite submissions from scholars and researchers worldwide, and we are committed to disseminating insightful and influential research in the field of sport and health science.