Yeast Genome Mutagenesis With Multi-Mismatch PCR: A Rapid and Efficient Strategy for Site-Directed Mutagenesis in Saccharomyces cerevisiae.

IF 2.2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yeast Pub Date : 2025-01-01 Epub Date: 2025-02-23 DOI:10.1002/yea.3993
Shuaihua Cao, Yixin Ding, Mingtao Li, Xiaoyu You, Jingfei Xu, Kunrong Mei
{"title":"Yeast Genome Mutagenesis With Multi-Mismatch PCR: A Rapid and Efficient Strategy for Site-Directed Mutagenesis in Saccharomyces cerevisiae.","authors":"Shuaihua Cao, Yixin Ding, Mingtao Li, Xiaoyu You, Jingfei Xu, Kunrong Mei","doi":"10.1002/yea.3993","DOIUrl":null,"url":null,"abstract":"<p><p>Saccharomyces cerevisiae (S. cerevisiae) provides an array of cost-effective and time-efficient methods for diverse genome modifications. Among these techniques, site-directed mutagenesis of target genes is a powerful strategy to elucidate intricate structure-function relationships and create specific mutations. While various PCR-based and CRISPR/Cas9-based methods have been developed for introducing point mutations into the S. cerevisiae genome, they often involve multiple steps. In this study, we presented a rapid and effective site-directed mutagenesis strategy using one-step multi-mismatch PCR, termed Yeast Genome Mutagenesis with Multi-mismatch PCR (YGMMP). YGMMP incorporated multiple synonymous mutations proximal to the target point mutations, along with a selection marker cassette and flanking homologous sequences, into the gene segment spanning from the desired mutation to the gene's terminus through overlap PCR. The resulting PCR product was introduced into yeast cells to facilitate the selection of target variants. As a proof of concept, we applied YGMMP to generate an ADE2 mutant. The results demonstrated that the introduction of five and nine synonymous mutations, in addition to the desired single-point mutation, yielded mutagenesis efficiencies of approximately 20% and 30%, respectively. This rapid, straightforward, and efficient method has the potential to greatly simplify site-specific modifications within the S. cerevisiae genome.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":" ","pages":"45-53"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yeast","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/yea.3993","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Saccharomyces cerevisiae (S. cerevisiae) provides an array of cost-effective and time-efficient methods for diverse genome modifications. Among these techniques, site-directed mutagenesis of target genes is a powerful strategy to elucidate intricate structure-function relationships and create specific mutations. While various PCR-based and CRISPR/Cas9-based methods have been developed for introducing point mutations into the S. cerevisiae genome, they often involve multiple steps. In this study, we presented a rapid and effective site-directed mutagenesis strategy using one-step multi-mismatch PCR, termed Yeast Genome Mutagenesis with Multi-mismatch PCR (YGMMP). YGMMP incorporated multiple synonymous mutations proximal to the target point mutations, along with a selection marker cassette and flanking homologous sequences, into the gene segment spanning from the desired mutation to the gene's terminus through overlap PCR. The resulting PCR product was introduced into yeast cells to facilitate the selection of target variants. As a proof of concept, we applied YGMMP to generate an ADE2 mutant. The results demonstrated that the introduction of five and nine synonymous mutations, in addition to the desired single-point mutation, yielded mutagenesis efficiencies of approximately 20% and 30%, respectively. This rapid, straightforward, and efficient method has the potential to greatly simplify site-specific modifications within the S. cerevisiae genome.

利用多重错配PCR技术实现酵母基因组突变:一种快速有效的酿酒酵母定点突变策略。
酿酒酵母(S. cerevisiae)为多种基因组修饰提供了一系列经济高效的方法。在这些技术中,定点诱变靶基因是阐明复杂的结构-功能关系和产生特定突变的有力策略。虽然已经开发了各种基于pcr和CRISPR/ cas9的方法来将点突变引入酿酒葡萄球菌基因组,但它们通常涉及多个步骤。在这项研究中,我们提出了一种快速有效的位点诱变策略,使用一步多错配PCR,称为酵母基因组诱变与多错配PCR (YGMMP)。YGMMP通过重叠PCR将多个靠近目标点突变的同义突变,以及选择标记盒和侧翼同源序列整合到从所需突变到基因末端的基因片段中。将所得PCR产物导入酵母细胞,以促进目标变异的选择。作为概念验证,我们应用YGMMP产生了ADE2突变体。结果表明,除了所需的单点突变外,引入5个和9个同义突变分别产生约20%和30%的诱变效率。这种快速、直接和有效的方法有可能大大简化酿酒酵母基因组中的位点特异性修饰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Yeast
Yeast 生物-生化与分子生物学
CiteScore
5.30
自引率
3.80%
发文量
55
审稿时长
3 months
期刊介绍: Yeast publishes original articles and reviews on the most significant developments of research with unicellular fungi, including innovative methods of broad applicability. It is essential reading for those wishing to keep up to date with this rapidly moving field of yeast biology. Topics covered include: biochemistry and molecular biology; biodiversity and taxonomy; biotechnology; cell and developmental biology; ecology and evolution; genetics and genomics; metabolism and physiology; pathobiology; synthetic and systems biology; tools and resources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信