Anna E Mullins, Ankit Parekh, Korey Kam, Daphne I Valencia, Reagan Schoenholz, Ahmad Fakhoury, Bresne Castillo, Zachary J Roberts, Sajila Wickramaratne, Thomas M Tolbert, Jeongyeon Hwang, Esther M Blessing, Omonigho M Bubu, David M Rapoport, Indu Ayappa, Ricardo S Osorio, Andrew W Varga
{"title":"EEG slow oscillations and overnight spatial navigational memory performance in CPAP-treated obstructive sleep apnea.","authors":"Anna E Mullins, Ankit Parekh, Korey Kam, Daphne I Valencia, Reagan Schoenholz, Ahmad Fakhoury, Bresne Castillo, Zachary J Roberts, Sajila Wickramaratne, Thomas M Tolbert, Jeongyeon Hwang, Esther M Blessing, Omonigho M Bubu, David M Rapoport, Indu Ayappa, Ricardo S Osorio, Andrew W Varga","doi":"10.1093/sleep/zsaf046","DOIUrl":null,"url":null,"abstract":"<p><p>Obstructive sleep apnea (OSA) exerts pathogenic effects through a combination of sleep fragmentation (SF) and intermittent hypoxia (IH). The mechanisms through which sleep disruption impacts memory might arise by investigating disruption of specific sleep stages and, when such disruption occurs through OSA, by evaluating the individual contributions of SF and IH. Given region-specific EEG slow activity during non-REM sleep has been associated with overnight declarative, motor and spatial memory formation, we investigated the effects of disrupting slow wave sleep (SWS) on a virtual maze navigation task. Thirty three participants (24 male, 56 years old [range 28-68 years] with OSA (baseline AHI4%>20/hour) who were habitually well-treated and adherent to CPAP completed 3 timed trials on a 3D spatial maze before and after polysomnographically (PSG) recorded sleep. We restricted CPAP withdrawal to SWS through real-time monitoring of the PSG under three conditions: 1) stable-SWS on therapeutic CPAP, 2) SWS-CPAP withdrawal containing SF and IH, and 3) SWS-CPAP withdrawal with supplemental oxygen containing SF with reduced IH. SWS-specific CPAP withdrawal (with or without supplemental oxygen) did not significantly impact EEG slow oscillation or spatial navigational memory, despite effectively reducing %SWS and SWS bout length. Greater regional EEG slow oscillation (0.6-1Hz), but not delta (1-4Hz) activity, was associated with improvements in overnight memory during stable SWS in the CPAP condition. These observations suggest that slow oscillations may be important for overnight memory processing, and sleep disruptions of sufficient magnitude to reduce slow oscillations may be required to capture demonstrable change in spatial navigation performance.</p>","PeriodicalId":22018,"journal":{"name":"Sleep","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/sleep/zsaf046","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Obstructive sleep apnea (OSA) exerts pathogenic effects through a combination of sleep fragmentation (SF) and intermittent hypoxia (IH). The mechanisms through which sleep disruption impacts memory might arise by investigating disruption of specific sleep stages and, when such disruption occurs through OSA, by evaluating the individual contributions of SF and IH. Given region-specific EEG slow activity during non-REM sleep has been associated with overnight declarative, motor and spatial memory formation, we investigated the effects of disrupting slow wave sleep (SWS) on a virtual maze navigation task. Thirty three participants (24 male, 56 years old [range 28-68 years] with OSA (baseline AHI4%>20/hour) who were habitually well-treated and adherent to CPAP completed 3 timed trials on a 3D spatial maze before and after polysomnographically (PSG) recorded sleep. We restricted CPAP withdrawal to SWS through real-time monitoring of the PSG under three conditions: 1) stable-SWS on therapeutic CPAP, 2) SWS-CPAP withdrawal containing SF and IH, and 3) SWS-CPAP withdrawal with supplemental oxygen containing SF with reduced IH. SWS-specific CPAP withdrawal (with or without supplemental oxygen) did not significantly impact EEG slow oscillation or spatial navigational memory, despite effectively reducing %SWS and SWS bout length. Greater regional EEG slow oscillation (0.6-1Hz), but not delta (1-4Hz) activity, was associated with improvements in overnight memory during stable SWS in the CPAP condition. These observations suggest that slow oscillations may be important for overnight memory processing, and sleep disruptions of sufficient magnitude to reduce slow oscillations may be required to capture demonstrable change in spatial navigation performance.
期刊介绍:
SLEEP® publishes findings from studies conducted at any level of analysis, including:
Genes
Molecules
Cells
Physiology
Neural systems and circuits
Behavior and cognition
Self-report
SLEEP® publishes articles that use a wide variety of scientific approaches and address a broad range of topics. These may include, but are not limited to:
Basic and neuroscience studies of sleep and circadian mechanisms
In vitro and animal models of sleep, circadian rhythms, and human disorders
Pre-clinical human investigations, including the measurement and manipulation of sleep and circadian rhythms
Studies in clinical or population samples. These may address factors influencing sleep and circadian rhythms (e.g., development and aging, and social and environmental influences) and relationships between sleep, circadian rhythms, health, and disease
Clinical trials, epidemiology studies, implementation, and dissemination research.