[Identification of HMA gene family and response to cadmium stress in Ophiopogon japonicas].

Q4 Biochemistry, Genetics and Molecular Biology
Zhihui Wang, Erli Niu, Yuanliang Gao, Qian Zhu, Zihong Ye, Xiaoping Yu, Qian Zhao, Jun Huang
{"title":"[Identification of HMA gene family and response to cadmium stress in <i>Ophiopogon japonicas</i>].","authors":"Zhihui Wang, Erli Niu, Yuanliang Gao, Qian Zhu, Zihong Ye, Xiaoping Yu, Qian Zhao, Jun Huang","doi":"10.13345/j.cjb.240475","DOIUrl":null,"url":null,"abstract":"<p><p>Soil cadmium (Cd) pollution is one of the major environmental problems globally. <i>Ophiopogon japonicus</i>, a multifunctional plant extensively used in traditional Chinese medicine, has demonstrated potential in environmental remediation. This study investigated the Cd accumulation pattern of <i>O</i>. <i>japonicus</i> under cadmium stress and identified the heavy metal ATPase (HMA) family members in this plant. Our results demonstrated that <i>O</i>. <i>japonicus</i> exhibited a Cd enrichment factor (EF) of 2.75, demonstrating strong potential for soil Cd pollution remediation. Nine heavy metal ATPase (HMA) members of P1B-ATPases were successfully identified from the transcriptome data of <i>O</i>. <i>japonicus</i>, with OjHMA1-OjHMA6 classified as the Zn/Co/Cd/Pb-ATPases and OjHMA7-OjHMA9 as the Cu/Ag-ATPases. The expression levels of <i>OjHMA1</i>, <i>OjHMA2</i>, <i>OjHMA3</i>, and <i>OjHMA7</i> were significantly up-regulated under Cd stress, highlighting their crucial roles in cadmium ion absorption and transport. The topological analysis revealed that these proteins possessed characteristic transmembrane (TM) segments of the family, along with functional A, P, and N domains involved in regulating ion absorption and release. Metal ion-binding sites (M4, M5, and M6) existed on the TM segments. Based on the number of transmembrane domains and the residues at metal ion-binding sites, the plant HMA family members were categorized into three subgroups: P1B-1 ATPases, P1B-2 ATPases, and P1B-4 ATPases. Specifically, the P1B-1 ATPase subgroup included the motifs TM4(CPC), TM5(YN[X]<sub>4</sub>P), and TM6(M[XX]SS); the P1B-2 ATPase subgroup featured the motifs TM4(CPC), TM5(K), and TM6(DKTGT); the P1B-4 ATPase subgroup contained the motifs TM4(SPC) and TM6(HE[X]GT), all of which were critical for protein functions. Molecular docking results revealed the importance of conserved sequences such as CPC/SPC, DKTGT, and HE[X]GT in metal ion coordination and stabilization. These findings provide potential molecular targets for enhancing Cd uptake and tolerance of <i>O</i>. <i>japonicus</i> by genetic engineering and lay a theoretical foundation for developing new cultivars with high Cd accumulation capacity.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 2","pages":"771-790"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Soil cadmium (Cd) pollution is one of the major environmental problems globally. Ophiopogon japonicus, a multifunctional plant extensively used in traditional Chinese medicine, has demonstrated potential in environmental remediation. This study investigated the Cd accumulation pattern of O. japonicus under cadmium stress and identified the heavy metal ATPase (HMA) family members in this plant. Our results demonstrated that O. japonicus exhibited a Cd enrichment factor (EF) of 2.75, demonstrating strong potential for soil Cd pollution remediation. Nine heavy metal ATPase (HMA) members of P1B-ATPases were successfully identified from the transcriptome data of O. japonicus, with OjHMA1-OjHMA6 classified as the Zn/Co/Cd/Pb-ATPases and OjHMA7-OjHMA9 as the Cu/Ag-ATPases. The expression levels of OjHMA1, OjHMA2, OjHMA3, and OjHMA7 were significantly up-regulated under Cd stress, highlighting their crucial roles in cadmium ion absorption and transport. The topological analysis revealed that these proteins possessed characteristic transmembrane (TM) segments of the family, along with functional A, P, and N domains involved in regulating ion absorption and release. Metal ion-binding sites (M4, M5, and M6) existed on the TM segments. Based on the number of transmembrane domains and the residues at metal ion-binding sites, the plant HMA family members were categorized into three subgroups: P1B-1 ATPases, P1B-2 ATPases, and P1B-4 ATPases. Specifically, the P1B-1 ATPase subgroup included the motifs TM4(CPC), TM5(YN[X]4P), and TM6(M[XX]SS); the P1B-2 ATPase subgroup featured the motifs TM4(CPC), TM5(K), and TM6(DKTGT); the P1B-4 ATPase subgroup contained the motifs TM4(SPC) and TM6(HE[X]GT), all of which were critical for protein functions. Molecular docking results revealed the importance of conserved sequences such as CPC/SPC, DKTGT, and HE[X]GT in metal ion coordination and stabilization. These findings provide potential molecular targets for enhancing Cd uptake and tolerance of O. japonicus by genetic engineering and lay a theoretical foundation for developing new cultivars with high Cd accumulation capacity.

麦冬HMA基因家族的鉴定及对镉胁迫的响应
土壤镉污染是全球性的主要环境问题之一。麦冬是一种被广泛应用于中药的多功能植物,具有良好的环境修复潜力。本研究研究了镉胁迫下日本稻(O. japonicus)的镉积累模式,并鉴定了日本稻重金属atp酶(HMA)家族成员。结果表明,黄参Cd富集因子(EF)为2.75,具有较强的土壤Cd修复潜力。从日本稻转录组数据中成功鉴定出p1a - atpases的9个重金属atp酶(HMA)成员,其中OjHMA1-OjHMA6为Zn/Co/Cd/Pb-ATPases, OjHMA7-OjHMA9为Cu/Ag-ATPases。Cd胁迫下,OjHMA1、OjHMA2、OjHMA3和OjHMA7的表达水平显著上调,表明它们在镉离子吸收和运输中起着重要作用。拓扑分析显示,这些蛋白具有该家族的特征跨膜(TM)片段,以及参与调节离子吸收和释放的功能A, P和N结构域。金属离子结合位点(M4、M5和M6)存在于TM节段上。根据跨膜结构域的数量和金属离子结合位点的残基,将植物HMA家族成员分为三个亚群:P1B-1 ATPases、P1B-2 ATPases和P1B-4 ATPases。具体来说,P1B-1 atp酶亚组包括TM4(CPC)、TM5(YN[X]4P)和TM6(M[XX]SS)基序;P1B-2 atp酶亚组具有TM4(CPC)、TM5(K)和TM6(DKTGT)基元;P1B-4 atp酶亚组包含TM4(SPC)和TM6(HE[X]GT)基序,它们都对蛋白质功能至关重要。分子对接结果揭示了CPC/SPC、DKTGT和HE[X]GT等保守序列在金属离子配位和稳定中的重要性。这些研究结果为利用基因工程技术提高日本稻对Cd的吸收和耐受能力提供了潜在的分子靶点,为培育具有高Cd积累能力的日本稻新品种奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sheng wu gong cheng xue bao = Chinese journal of biotechnology
Sheng wu gong cheng xue bao = Chinese journal of biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
1.50
自引率
0.00%
发文量
298
期刊介绍: Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信