Phytohormones enhance resistance to Tenebrio molitor by regulating reactive oxygen species and phenolic metabolism in pigeon pea.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Jie Yang, Hongquan Li, Su Zhang, Yuexin Zhang, Jianbo Xie, Michael Wink, Yujie Fu
{"title":"Phytohormones enhance resistance to Tenebrio molitor by regulating reactive oxygen species and phenolic metabolism in pigeon pea.","authors":"Jie Yang, Hongquan Li, Su Zhang, Yuexin Zhang, Jianbo Xie, Michael Wink, Yujie Fu","doi":"10.1111/ppl.70111","DOIUrl":null,"url":null,"abstract":"<p><p>Pigeon pea is an important economic crop with medicinal and nutritional value. Unfortunately, pest infestation of leaves during postharvest storage seriously affects the quality of pigeon pea. Phytohormones play a crucial role in disease and pest defence by regulating the accumulation of specialized metabolites. Still, their impact on the postharvest storage of pigeon pea has not been reported. In this study, the physiological parameters and main phenotypes of pigeon pea leaves treated with MeJA, ABA, and GA were investigated for the first time. The activity of the antioxidant enzyme system, which eliminates reactive oxygen species, was enhanced by applying MeJA, GA, and ABA. MeJA, GA, and ABA significantly affected crown width, plant height, and relative water content in pigeon pea, respectively. Metabolomic profiling analysis identified phenolic compounds as the main differentially accumulated metabolites (DAMs). UPLC-QqQ-MS/MS identified stilbenes, flavanones, flavones, isoflavones and anthocyanins as major phenolic compounds responsive to MeJA, GA, and ABA induction. By feeding insects, it was found that the insects fed on MeJA-, ABA-, and GA-treated leaves less than on control leaves. Correlation analysis confirmed that isoflavones play an important role in this process. Moreover, the expression of key genes involved in flavonoid biosynthetic pathways and anti-insect-related genes was regulated by MeJA, GA, and ABA. Overall, this work provides a new strategy for the cultivation and storage of pigeon pea or other commercial crops and preliminarily clarifies that flavonoid metabolites under plant hormone treatment can promote plant growth and defence against insects by regulating reactive oxygen species.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70111"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70111","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pigeon pea is an important economic crop with medicinal and nutritional value. Unfortunately, pest infestation of leaves during postharvest storage seriously affects the quality of pigeon pea. Phytohormones play a crucial role in disease and pest defence by regulating the accumulation of specialized metabolites. Still, their impact on the postharvest storage of pigeon pea has not been reported. In this study, the physiological parameters and main phenotypes of pigeon pea leaves treated with MeJA, ABA, and GA were investigated for the first time. The activity of the antioxidant enzyme system, which eliminates reactive oxygen species, was enhanced by applying MeJA, GA, and ABA. MeJA, GA, and ABA significantly affected crown width, plant height, and relative water content in pigeon pea, respectively. Metabolomic profiling analysis identified phenolic compounds as the main differentially accumulated metabolites (DAMs). UPLC-QqQ-MS/MS identified stilbenes, flavanones, flavones, isoflavones and anthocyanins as major phenolic compounds responsive to MeJA, GA, and ABA induction. By feeding insects, it was found that the insects fed on MeJA-, ABA-, and GA-treated leaves less than on control leaves. Correlation analysis confirmed that isoflavones play an important role in this process. Moreover, the expression of key genes involved in flavonoid biosynthetic pathways and anti-insect-related genes was regulated by MeJA, GA, and ABA. Overall, this work provides a new strategy for the cultivation and storage of pigeon pea or other commercial crops and preliminarily clarifies that flavonoid metabolites under plant hormone treatment can promote plant growth and defence against insects by regulating reactive oxygen species.

植物激素通过调节鸽子豆中的活性氧和酚代谢增强其对 Tenebrio molitor 的抗性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信