{"title":"[Functions and mechanisms of Zn<sup>2+</sup>-dependent histone deacetylase in plant responses to abiotic stress].","authors":"Ming Wei, Meng Zhao, Xinrui Wu, Guoqiang Wu","doi":"10.13345/j.cjb.240570","DOIUrl":null,"url":null,"abstract":"<p><p>The HDAs (a subfamily of histone deacetylases), a class of Zn<sup>2+</sup>-dependent histone deacetylases, are highly homologous to the reduced potassium dependency 3 (RPD3) in yeast. HDAs extensively regulate chromosome stability, gene transcription, and protein activity by catalyzing the removal of acetyl group from histone and non-histone lysine residues. HDA-mediated deacetylation is essential for plant growth, development, and responses to abiotic stress. We review the research progress in HDAs regarding the discovery, structures, classification, deacetylation process, and roles in regulating plant responses to abiotic stress. Furthermore, this paper prospects the future research on HDAs, aiming to provide theoretical support for the research on epigenetic regulation mediated by HDAs.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 2","pages":"491-509"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The HDAs (a subfamily of histone deacetylases), a class of Zn2+-dependent histone deacetylases, are highly homologous to the reduced potassium dependency 3 (RPD3) in yeast. HDAs extensively regulate chromosome stability, gene transcription, and protein activity by catalyzing the removal of acetyl group from histone and non-histone lysine residues. HDA-mediated deacetylation is essential for plant growth, development, and responses to abiotic stress. We review the research progress in HDAs regarding the discovery, structures, classification, deacetylation process, and roles in regulating plant responses to abiotic stress. Furthermore, this paper prospects the future research on HDAs, aiming to provide theoretical support for the research on epigenetic regulation mediated by HDAs.
期刊介绍:
Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.