{"title":"[Functions and mechanisms of autophagy-related genes in plant responses to adversity stresses].","authors":"Yun'er Ren, Guoqiang Wu, Ming Wei","doi":"10.13345/j.cjb.240661","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy is an evolutionarily conserved self-degradation process in eukaryotes. It not only plays a role in plant growth and development but also is involved in plant responses to biotic and abiotic stresses. Plants can initiate autophagy to degrade the surplus or damaged cytoplasmic materials and organelles, thus coping with abiotic and biotic stresses. The initiation of autophagy depends on autophagy-related genes (ATGs). The transcription factors can directly bind to the promoters of ATGs to activate autophagy and regulate their transcriptional levels and post-translational modifications. Furthermore, ATGs can directly or indirectly interact with plant hormones to regulate plant responses to stresses. When plants are exposed to salinity, drought, extreme temperatures, nutrient deficiencies, and pathogen stress, ATGs are significantly induced, which enhances the autophagy activity to facilitate the degradation of the denatured and misfolded proteins, thereby enhancing plant tolerance to adversity stresses. This article summarizes the discovery, structures, and classification of plant ATGs, reviews the research progress in the mechanisms of ATGs in plant responses to abiotic and biotic stresses, and prospects the future research directions. This review is expected to provide the genetic resources and a theoretical foundation for the genetic improvement of crops in responses to stress tolerance.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 2","pages":"510-529"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Autophagy is an evolutionarily conserved self-degradation process in eukaryotes. It not only plays a role in plant growth and development but also is involved in plant responses to biotic and abiotic stresses. Plants can initiate autophagy to degrade the surplus or damaged cytoplasmic materials and organelles, thus coping with abiotic and biotic stresses. The initiation of autophagy depends on autophagy-related genes (ATGs). The transcription factors can directly bind to the promoters of ATGs to activate autophagy and regulate their transcriptional levels and post-translational modifications. Furthermore, ATGs can directly or indirectly interact with plant hormones to regulate plant responses to stresses. When plants are exposed to salinity, drought, extreme temperatures, nutrient deficiencies, and pathogen stress, ATGs are significantly induced, which enhances the autophagy activity to facilitate the degradation of the denatured and misfolded proteins, thereby enhancing plant tolerance to adversity stresses. This article summarizes the discovery, structures, and classification of plant ATGs, reviews the research progress in the mechanisms of ATGs in plant responses to abiotic and biotic stresses, and prospects the future research directions. This review is expected to provide the genetic resources and a theoretical foundation for the genetic improvement of crops in responses to stress tolerance.
期刊介绍:
Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.