Spencer J Skaper, Brooke R Shepley, Ibrahim Amr Wafai, Philip N Ainslie, Anthony R Bain, Kurt J Smith
{"title":"Regional cerebral pulsatile hemodynamics during isocapnic and poikilocapnic hyperthermia in young men.","authors":"Spencer J Skaper, Brooke R Shepley, Ibrahim Amr Wafai, Philip N Ainslie, Anthony R Bain, Kurt J Smith","doi":"10.14814/phy2.70258","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperthermia is known to induce hypocapnia-driven reductions in cerebral blood flow; however, it is unknown if it causes changes in hemodynamic pulsatility that negatively influence cerebrovascular function. This retrospective analysis aimed to assess cerebrovascular hemodynamic pulsatile buffering (damping factor; DFi) during poikilocapnic (HT) and isocapnic (HT-C) hyperthermia. We hypothesized that HT would reduce cerebral DFi, while HT-C would attenuate the reduction in DFi by limiting increases in resistance. Ten healthy males were passively heated +2°C from normothermia (BL). Blood flow through the internal carotid artery (ICA) and vertebral artery (VA) was measured using vascular ultrasound. Blood velocity through the middle cerebral artery (MCA) and the posterior cerebral artery (PCA) was measured using transcranial ultrasound. DFi was calculated as the ratio of proximal to distal pulsatility index (PI): Anterior cerebral DFi = PI<sub>ICA</sub>/PI<sub>MCA</sub>; Posterior cerebral DFi = PI<sub>VA</sub>/PI<sub>PCA</sub>. Anterior DFi decreased in both HT (1.08 ± 0.19 a.u; p = 0.007) and HT-C (1.12 ± 0.231 a.u; p = 0.021) conditions from BL values (1.27 ± 0.14 a.u). No changes were observed in posterior DFi, p = 0.116. Irrespective of P<sub>a</sub>CO<sub>2</sub> clamping, both hyperthermic conditions reduced anterior DFi, suggesting other mechanisms are responsible for cerebrovascular hemodynamic buffering. Posterior DFi responses were not observed, suggesting preferential buffering of the hyperthermic posterior circulation (VA-PCA).</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 4","pages":"e70258"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847895/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperthermia is known to induce hypocapnia-driven reductions in cerebral blood flow; however, it is unknown if it causes changes in hemodynamic pulsatility that negatively influence cerebrovascular function. This retrospective analysis aimed to assess cerebrovascular hemodynamic pulsatile buffering (damping factor; DFi) during poikilocapnic (HT) and isocapnic (HT-C) hyperthermia. We hypothesized that HT would reduce cerebral DFi, while HT-C would attenuate the reduction in DFi by limiting increases in resistance. Ten healthy males were passively heated +2°C from normothermia (BL). Blood flow through the internal carotid artery (ICA) and vertebral artery (VA) was measured using vascular ultrasound. Blood velocity through the middle cerebral artery (MCA) and the posterior cerebral artery (PCA) was measured using transcranial ultrasound. DFi was calculated as the ratio of proximal to distal pulsatility index (PI): Anterior cerebral DFi = PIICA/PIMCA; Posterior cerebral DFi = PIVA/PIPCA. Anterior DFi decreased in both HT (1.08 ± 0.19 a.u; p = 0.007) and HT-C (1.12 ± 0.231 a.u; p = 0.021) conditions from BL values (1.27 ± 0.14 a.u). No changes were observed in posterior DFi, p = 0.116. Irrespective of PaCO2 clamping, both hyperthermic conditions reduced anterior DFi, suggesting other mechanisms are responsible for cerebrovascular hemodynamic buffering. Posterior DFi responses were not observed, suggesting preferential buffering of the hyperthermic posterior circulation (VA-PCA).
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.