Magdalena Lasak, Małgorzata Łysek-Gładysińska, Karolina Lach, Viraj P Nirwan, Dorota Kuc-Ciepluch, Javier Sanchez-Nieves, Francisco Javier de la Mata, Amir Fahmi, Karol Ciepluch
{"title":"Electrospun Nanofibers for the Delivery of Endolysin/Dendronized Ag-NPs Complex Against Pseudomonas aeruginosa.","authors":"Magdalena Lasak, Małgorzata Łysek-Gładysińska, Karolina Lach, Viraj P Nirwan, Dorota Kuc-Ciepluch, Javier Sanchez-Nieves, Francisco Javier de la Mata, Amir Fahmi, Karol Ciepluch","doi":"10.2147/NSA.S498942","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>As bacterial resistance to antibiotics increases, there is an urgent need to identify alternative antibacterial agents and improve antibacterial materials. One is the controlled transport of antibacterial agents that prevents infection with drug-resistant bacteria, especially in the treatment of difficult-to-heal wounds.</p><p><strong>Methods: </strong>This work presents the use of electrospun PLCL/PVP (poly(L-lactide-co-ε-caprolactone/polyvinylpyrrolidone) nanofibers modified with two agents with antibacterial properties but with different mechanisms of action, that is, dendritic silver nanoparticles (Dend-AgNPs) and endolysin.</p><p><strong>Results: </strong>The nanomat prepared in this manner showed significant antibacterial activity against antibiotic-resistant Pseudomonas aeruginosa strains, inhibiting their growth and production of key pigments and virulence factors. Moreover, the use of nanofibers as carriers of the selected factors significantly reduced their cytotoxicity towards human fibroblasts.</p><p><strong>Conclusion: </strong>The results confirmed the possibility of using the presented product as an innovative dressing material, opening new perspectives for the treatment of wounds and combating bacterial infections with drug-resistant bacteria.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"18 ","pages":"57-70"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology, Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/NSA.S498942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: As bacterial resistance to antibiotics increases, there is an urgent need to identify alternative antibacterial agents and improve antibacterial materials. One is the controlled transport of antibacterial agents that prevents infection with drug-resistant bacteria, especially in the treatment of difficult-to-heal wounds.
Methods: This work presents the use of electrospun PLCL/PVP (poly(L-lactide-co-ε-caprolactone/polyvinylpyrrolidone) nanofibers modified with two agents with antibacterial properties but with different mechanisms of action, that is, dendritic silver nanoparticles (Dend-AgNPs) and endolysin.
Results: The nanomat prepared in this manner showed significant antibacterial activity against antibiotic-resistant Pseudomonas aeruginosa strains, inhibiting their growth and production of key pigments and virulence factors. Moreover, the use of nanofibers as carriers of the selected factors significantly reduced their cytotoxicity towards human fibroblasts.
Conclusion: The results confirmed the possibility of using the presented product as an innovative dressing material, opening new perspectives for the treatment of wounds and combating bacterial infections with drug-resistant bacteria.
期刊介绍:
Nanotechnology, Science and Applications is an international, peer-reviewed, Open Access journal that focuses on the science of nanotechnology in a wide range of industrial and academic applications. The journal is characterized by the rapid reporting of reviews, original research, and application studies across all sectors, including engineering, optics, bio-medicine, cosmetics, textiles, resource sustainability and science. Applied research into nano-materials, particles, nano-structures and fabrication, diagnostics and analytics, drug delivery and toxicology constitute the primary direction of the journal.