Improving the performance of floating gate phototransistor memory with perovskite nanocrystals embedded in fluorinated polyamic acids†

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Wei-En Wu, You-Wei Cao, Yu-Chih Hsu, Yan-Cheng Lin and Yang-Yen Yu
{"title":"Improving the performance of floating gate phototransistor memory with perovskite nanocrystals embedded in fluorinated polyamic acids†","authors":"Wei-En Wu, You-Wei Cao, Yu-Chih Hsu, Yan-Cheng Lin and Yang-Yen Yu","doi":"10.1039/D4NA00939H","DOIUrl":null,"url":null,"abstract":"<p >This study aims to develop a hybrid material using fluorine-containing polyamic acid (PAA) polymers and a perovskite (PVSK) for application in transistor-based photomemory devices to enhance both structural and electrical performance. Adding fluorides to the PAA material creates a structure with Lewis acid–base interactions, improving the interface between PVSK and PAA, reducing defect density in the floating gate dielectric layer, and passivating grain defects. Furthermore, the hydrophobic PAA structure provides an improved crystalline nucleation interface for the semiconductor pentacene, thereby significantly enhancing the hole mobility of the transistor. In electrical performance tests, devices utilizing ODA–6FDA (poly(4,4′-diaminodiphenyl ether-<em>alt</em>-4,4′-(hexafluoroisopropylidene)diphthalic anhydride)) as the floating gate exhibited a superior ON/OFF current ratio, approaching 10<small><sup>6</sup></small>, compared to other PAA materials, and demonstrated stable dynamic switching currents. Additionally, incorporating fluorides into the PVSK material resulted in a more stable memory window, enabling the devices to maintain excellent performance during cyclic operation and long-term storage stability tests. These findings highlight the potential of combining fluorinated polymers with PVSK materials, further advancing the development and application of optoelectronic materials.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" 7","pages":" 2092-2104"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843254/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/na/d4na00939h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to develop a hybrid material using fluorine-containing polyamic acid (PAA) polymers and a perovskite (PVSK) for application in transistor-based photomemory devices to enhance both structural and electrical performance. Adding fluorides to the PAA material creates a structure with Lewis acid–base interactions, improving the interface between PVSK and PAA, reducing defect density in the floating gate dielectric layer, and passivating grain defects. Furthermore, the hydrophobic PAA structure provides an improved crystalline nucleation interface for the semiconductor pentacene, thereby significantly enhancing the hole mobility of the transistor. In electrical performance tests, devices utilizing ODA–6FDA (poly(4,4′-diaminodiphenyl ether-alt-4,4′-(hexafluoroisopropylidene)diphthalic anhydride)) as the floating gate exhibited a superior ON/OFF current ratio, approaching 106, compared to other PAA materials, and demonstrated stable dynamic switching currents. Additionally, incorporating fluorides into the PVSK material resulted in a more stable memory window, enabling the devices to maintain excellent performance during cyclic operation and long-term storage stability tests. These findings highlight the potential of combining fluorinated polymers with PVSK materials, further advancing the development and application of optoelectronic materials.

Abstract Image

钙钛矿纳米晶嵌入氟化聚酰胺酸改善浮栅光电晶体管存储器的性能。
本研究旨在开发一种使用含氟聚酰胺(PAA)聚合物和钙钛矿(PVSK)的混合材料,用于基于晶体管的光存储器件,以提高结构和电气性能。在PAA材料中添加氟化物可以形成具有Lewis酸碱相互作用的结构,改善PVSK与PAA之间的界面,降低浮栅介电层中的缺陷密度,并钝化晶粒缺陷。此外,疏水PAA结构为半导体并五烯提供了一个改进的结晶成核界面,从而显著提高了晶体管的空穴迁移率。在电性能测试中,与其他PAA材料相比,使用ODA-6FDA(聚(4,4'-二氨基二苯基醚-alt-4,4'-(六氟异丙基)二苯二酸酐)作为浮栅的器件表现出优越的开/关电流比,接近106,并表现出稳定的动态开关电流。此外,将氟化物掺入PVSK材料可获得更稳定的记忆窗口,使器件在循环操作和长期存储稳定性测试中保持优异的性能。这些发现突出了氟化聚合物与PVSK材料结合的潜力,进一步推动了光电材料的发展和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信