Mansi, Vishal Shrivastav, Prashant Dubey, Aristides Bakandritsos, Shashank Sundriyal, Umesh K Tiwari, Akash Deep
{"title":"High performance supercapacitors driven by the synergy of a redox-active electrolyte and core-nanoshell zeolitic imidazolate frameworks.","authors":"Mansi, Vishal Shrivastav, Prashant Dubey, Aristides Bakandritsos, Shashank Sundriyal, Umesh K Tiwari, Akash Deep","doi":"10.1039/d4na00805g","DOIUrl":null,"url":null,"abstract":"<p><p>The selection of appropriate electrolytes plays a crucial role in improving the electrochemical performance of the supercapacitor electrode. The electrolyte helps to select an appropriate potential window of the device, which is directly related to its energy density. Also, the selection of an appropriate electrode material targets the specific capacitance. Therefore, in this work, we targeted an electrode material based on a ZIF-8@ZIF-67 (Z867) core-nanoshell structure and tested its performance in redox active electrolyte (RAE), <i>i.e.</i>, 0.2 M K<sub>3</sub>[Fe(CN)<sub>6</sub>] in 1 M Na<sub>2</sub>SO<sub>4</sub>. The synergy between the core-nanoshell electrode having ZIF-8 as a core and ZIF-67 as a nanoshell along with RAE further complements the redox active sites, resulting in the improved charge transport. Therefore, when the Z867 core-nanoshell electrode is tested in a three-electrode system, it outperforms pristine ZIF-8 and ZIF-67 electrode materials. The working electrode modified with the Z867 core-nanoshell showed a maximum specific capacitance of 496.4 F g<sup>-1</sup> at 4.5 A g<sup>-1</sup> current density with the RAE, which is much higher than that of the aqueous electrolyte. A Z867-modified working electrode was assembled as the positive and negative electrode in a symmetrical cell configuration to create a redox supercapacitor device for practical application. The constructed device displayed maximal energy and power densities of 49.6 W h kg<sup>-1</sup> and 3.2 kW kg<sup>-1</sup> respectively, along with a capacitance retention of 92% after 10 000 charge-discharge cycles. Hence, these studies confirm that using RAE can improve the electrochemical performance of electrodes to a greater extent than that of aqueous electrolyte-based supercapacitors.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844434/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00805g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The selection of appropriate electrolytes plays a crucial role in improving the electrochemical performance of the supercapacitor electrode. The electrolyte helps to select an appropriate potential window of the device, which is directly related to its energy density. Also, the selection of an appropriate electrode material targets the specific capacitance. Therefore, in this work, we targeted an electrode material based on a ZIF-8@ZIF-67 (Z867) core-nanoshell structure and tested its performance in redox active electrolyte (RAE), i.e., 0.2 M K3[Fe(CN)6] in 1 M Na2SO4. The synergy between the core-nanoshell electrode having ZIF-8 as a core and ZIF-67 as a nanoshell along with RAE further complements the redox active sites, resulting in the improved charge transport. Therefore, when the Z867 core-nanoshell electrode is tested in a three-electrode system, it outperforms pristine ZIF-8 and ZIF-67 electrode materials. The working electrode modified with the Z867 core-nanoshell showed a maximum specific capacitance of 496.4 F g-1 at 4.5 A g-1 current density with the RAE, which is much higher than that of the aqueous electrolyte. A Z867-modified working electrode was assembled as the positive and negative electrode in a symmetrical cell configuration to create a redox supercapacitor device for practical application. The constructed device displayed maximal energy and power densities of 49.6 W h kg-1 and 3.2 kW kg-1 respectively, along with a capacitance retention of 92% after 10 000 charge-discharge cycles. Hence, these studies confirm that using RAE can improve the electrochemical performance of electrodes to a greater extent than that of aqueous electrolyte-based supercapacitors.