A novel framework for the automated characterization of Gram-stained blood culture slides using a large-scale vision transformer.

IF 6.1 2区 医学 Q1 MICROBIOLOGY
Journal of Clinical Microbiology Pub Date : 2025-03-12 Epub Date: 2025-02-24 DOI:10.1128/jcm.01514-24
Jack McMahon, Naofumi Tomita, Elizabeth S Tatishev, Adrienne A Workman, Cristina R Costales, Niaz Banaei, Isabella W Martin, Saeed Hassanpour
{"title":"A novel framework for the automated characterization of Gram-stained blood culture slides using a large-scale vision transformer.","authors":"Jack McMahon, Naofumi Tomita, Elizabeth S Tatishev, Adrienne A Workman, Cristina R Costales, Niaz Banaei, Isabella W Martin, Saeed Hassanpour","doi":"10.1128/jcm.01514-24","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a new framework for the artificial intelligence-based characterization of Gram-stained whole-slide images (WSIs). As a test for the diagnosis of bloodstream infections, Gram stains provide critical early data to inform patient treatment in conjunction with data from rapid molecular tests. In this work, we developed a novel transformer-based model for Gram-stained WSI classification, which is more scalable to large data sets than previous convolutional neural network-based methods as it does not require patch-level manual annotations. We also introduce a large Gram stain data set from Dartmouth-Hitchcock Medical Center (Lebanon, New Hampshire, USA) to evaluate our model, exploring the classification of five major categories of Gram-stained WSIs: gram-positive cocci in clusters, gram-positive cocci in pairs/chains, gram-positive rods, gram-negative rods, and slides with no bacteria. Our model achieves a classification accuracy of 0.858 (95% CI: 0.805, 0.905) and an area under the receiver operating characteristic curve (AUC) of 0.952 (95% CI: 0.922, 0.976) using fivefold nested cross-validation on our 475-slide data set, demonstrating the potential of large-scale transformer models for Gram stain classification. Results were measured against the final clinical laboratory Gram stain report after growth of organism in culture. We further demonstrate the generalizability of our trained model by applying it without additional fine-tuning on a second 27-slide external data set from Stanford Health (Palo Alto, California, USA) where it achieves a binary classification accuracy of 0.926 (95% CI: 0.885, 0.960) and an AUC of 0.8651 (95% CI: 0.6337, 0.9917) while distinguishing gram-positive from gram-negative bacteria.</p><p><strong>Importance: </strong>This study introduces a scalable transformer-based deep learning model for automating Gram-stained whole-slide image classification. It surpasses previous methods by eliminating the need for manual annotations and demonstrates high accuracy and generalizability across multiple data sets, enhancing the speed and reliability of Gram stain analysis.</p>","PeriodicalId":15511,"journal":{"name":"Journal of Clinical Microbiology","volume":" ","pages":"e0151424"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898657/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jcm.01514-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a new framework for the artificial intelligence-based characterization of Gram-stained whole-slide images (WSIs). As a test for the diagnosis of bloodstream infections, Gram stains provide critical early data to inform patient treatment in conjunction with data from rapid molecular tests. In this work, we developed a novel transformer-based model for Gram-stained WSI classification, which is more scalable to large data sets than previous convolutional neural network-based methods as it does not require patch-level manual annotations. We also introduce a large Gram stain data set from Dartmouth-Hitchcock Medical Center (Lebanon, New Hampshire, USA) to evaluate our model, exploring the classification of five major categories of Gram-stained WSIs: gram-positive cocci in clusters, gram-positive cocci in pairs/chains, gram-positive rods, gram-negative rods, and slides with no bacteria. Our model achieves a classification accuracy of 0.858 (95% CI: 0.805, 0.905) and an area under the receiver operating characteristic curve (AUC) of 0.952 (95% CI: 0.922, 0.976) using fivefold nested cross-validation on our 475-slide data set, demonstrating the potential of large-scale transformer models for Gram stain classification. Results were measured against the final clinical laboratory Gram stain report after growth of organism in culture. We further demonstrate the generalizability of our trained model by applying it without additional fine-tuning on a second 27-slide external data set from Stanford Health (Palo Alto, California, USA) where it achieves a binary classification accuracy of 0.926 (95% CI: 0.885, 0.960) and an AUC of 0.8651 (95% CI: 0.6337, 0.9917) while distinguishing gram-positive from gram-negative bacteria.

Importance: This study introduces a scalable transformer-based deep learning model for automating Gram-stained whole-slide image classification. It surpasses previous methods by eliminating the need for manual annotations and demonstrates high accuracy and generalizability across multiple data sets, enhancing the speed and reliability of Gram stain analysis.

使用大型视觉变压器自动表征革兰氏染色血培养玻片的新框架。
本研究引入了一种基于人工智能的革兰氏染色全片图像(wsi)表征的新框架。作为血液感染诊断的测试,革兰氏染色与快速分子测试的数据一起提供了重要的早期数据,为患者的治疗提供了信息。在这项工作中,我们开发了一种新的基于变压器的革兰氏染色WSI分类模型,它比以前基于卷积神经网络的方法更适合大型数据集,因为它不需要补丁级的手动注释。我们还引入了来自达特茅斯-希区科克医学中心(Lebanon, New Hampshire, USA)的大量革兰氏染色数据集来评估我们的模型,探索革兰氏染色wsi的五大类分类:簇状革兰氏阳性球菌、成对/链状革兰氏阳性球菌、革兰氏阳性棒、革兰氏阴性棒和无细菌载玻片。我们的模型在475张幻灯片数据集上进行了五次嵌套交叉验证,实现了0.858 (95% CI: 0.805, 0.905)的分类精度和0.952 (95% CI: 0.922, 0.976)的接收者工作特征曲线下面积(AUC),证明了大规模变压器模型在革兰氏染色分类方面的潜力。结果与培养后的最终临床实验室革兰氏染色报告相比较。我们进一步证明了我们训练的模型的可泛化性,将其应用于来自Stanford Health (Palo Alto, California, USA)的第二个27张外部数据集,无需额外的微调,在区分革兰氏阳性和革兰氏阴性细菌时,它的二元分类精度为0.926 (95% CI: 0.885, 0.960), AUC为0.8651 (95% CI: 0.6337, 0.9917)。重要性:本研究引入了一种可扩展的基于变压器的深度学习模型,用于自动化革兰氏染色整张幻灯片图像分类。它超越了以前的方法,消除了手工注释的需要,并在多个数据集上展示了高准确性和泛化性,提高了革兰氏染色分析的速度和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical Microbiology
Journal of Clinical Microbiology 医学-微生物学
CiteScore
17.10
自引率
4.30%
发文量
347
审稿时长
3 months
期刊介绍: The Journal of Clinical Microbiology® disseminates the latest research concerning the laboratory diagnosis of human and animal infections, along with the laboratory's role in epidemiology and the management of infectious diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信