{"title":"Discovery of a selective PI3Kα inhibitor <i>via</i> structure-based virtual screening for targeted colorectal cancer therapy.","authors":"Hussam Albassam, Omar Almutairi, Majed Alnasser, Faisal Altowairqi, Faris Almutairi, Saad Alobid","doi":"10.1080/14756366.2025.2468852","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, driving an urgent need for effective therapies. A promising avenue of research focuses on the PI3K/AKT/mTOR signalling pathway, which is frequently disrupted by mutations in the PI3Kα subunit. Our cutting-edge study employed a structure-based virtual screening of ∼3000 compounds, leading to the discovery of F0608-0019, a highly potent and selective PI3Kα inhibitor. F0608-0019 demonstrated remarkable efficacy in suppressing HCT116 colorectal cancer cell proliferation, with an IC<sub>50</sub> of 12.14 µM, while maintaining high selectivity by minimising activity against other PI3K isoforms. Advanced molecular dynamics simulations highlighted the stability of F0608-0019's binding interactions with key amino acids, such as TRP:780, ILE:932, and VAL:850, which are critical for its targeted action. These exciting findings reveal F0608-0019 as a leading candidate for innovative CRC therapies that selectively target PI3Kα dysregulation, offering promising new possibilities for effective CRC treatment.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2468852"},"PeriodicalIF":5.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852364/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2025.2468852","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, driving an urgent need for effective therapies. A promising avenue of research focuses on the PI3K/AKT/mTOR signalling pathway, which is frequently disrupted by mutations in the PI3Kα subunit. Our cutting-edge study employed a structure-based virtual screening of ∼3000 compounds, leading to the discovery of F0608-0019, a highly potent and selective PI3Kα inhibitor. F0608-0019 demonstrated remarkable efficacy in suppressing HCT116 colorectal cancer cell proliferation, with an IC50 of 12.14 µM, while maintaining high selectivity by minimising activity against other PI3K isoforms. Advanced molecular dynamics simulations highlighted the stability of F0608-0019's binding interactions with key amino acids, such as TRP:780, ILE:932, and VAL:850, which are critical for its targeted action. These exciting findings reveal F0608-0019 as a leading candidate for innovative CRC therapies that selectively target PI3Kα dysregulation, offering promising new possibilities for effective CRC treatment.
期刊介绍:
Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research.
The journal’s focus includes current developments in:
Enzymology;
Cell biology;
Chemical biology;
Microbiology;
Physiology;
Pharmacology leading to drug design;
Molecular recognition processes;
Distribution and metabolism of biologically active compounds.