DSCC1 Identified as Promising Tumor Biomarker and Potential Therapeutic Target Through Comprehensive Multi-omics Analysis and Experimental Validation.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Wei Cheng, Peng Lin
{"title":"DSCC1 Identified as Promising Tumor Biomarker and Potential Therapeutic Target Through Comprehensive Multi-omics Analysis and Experimental Validation.","authors":"Wei Cheng, Peng Lin","doi":"10.1007/s12033-025-01404-w","DOIUrl":null,"url":null,"abstract":"<p><p>As a component of the alternative replication factor C (RFC) complex, DSCC1 plays a significant role in cancer progression due to its aberrant expression. However, the potential function of DSCC1 in a pan-cancer context remains unclear. In this study, we conducted a comprehensive analysis of DSCC1's role in tumors by integrating multi-omics bioinformatics tools. First, we utilized various databases to compare the expression of DSCC1 between tumor and normal tissues, revealing a strong association between its dysregulated expression and clinical diagnosis, prognosis, and staging. Additionally, we investigated different mutation types of DSCC1 and their contributions to cancer progression, finding that DSCC1 expression is regulated by epigenetics and RNA modifications. Furthermore, we explored the correlation between DSCC1 and immune-infiltrating cells, as well as immunotherapeutic biomarkers, suggesting that its expression influences the tumor immune microenvironment. By employing single-cell and spatial transcriptome data through platforms such as SingleCellBase, CancerSEA, and CROST, we further uncovered the heterogeneity of DSCC1 across various cancer types. Finally, we validated the significant upregulation of DSCC1 mRNA in multiple tumor cell lines using q-RTPCR, and demonstrated through CCK8 assays that silencing DSCC1 expression effectively suppressed cell proliferation. Our findings establish a foundational understanding of DSCC1's potential as a biomarker for cancer diagnosis, prognosis, and immunotherapy.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-025-01404-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As a component of the alternative replication factor C (RFC) complex, DSCC1 plays a significant role in cancer progression due to its aberrant expression. However, the potential function of DSCC1 in a pan-cancer context remains unclear. In this study, we conducted a comprehensive analysis of DSCC1's role in tumors by integrating multi-omics bioinformatics tools. First, we utilized various databases to compare the expression of DSCC1 between tumor and normal tissues, revealing a strong association between its dysregulated expression and clinical diagnosis, prognosis, and staging. Additionally, we investigated different mutation types of DSCC1 and their contributions to cancer progression, finding that DSCC1 expression is regulated by epigenetics and RNA modifications. Furthermore, we explored the correlation between DSCC1 and immune-infiltrating cells, as well as immunotherapeutic biomarkers, suggesting that its expression influences the tumor immune microenvironment. By employing single-cell and spatial transcriptome data through platforms such as SingleCellBase, CancerSEA, and CROST, we further uncovered the heterogeneity of DSCC1 across various cancer types. Finally, we validated the significant upregulation of DSCC1 mRNA in multiple tumor cell lines using q-RTPCR, and demonstrated through CCK8 assays that silencing DSCC1 expression effectively suppressed cell proliferation. Our findings establish a foundational understanding of DSCC1's potential as a biomarker for cancer diagnosis, prognosis, and immunotherapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信