Population Pharmacokinetics-Based Evaluation of Ceftazidime-Avibactam Dosing Regimens in Critically and Non-Critically Ill Patients With Carbapenem-Resistant Klebsiella pneumoniae.
Yiying Chen, Bo Chen, Yingbin Huang, Xueyong Li, Junnan Wu, Rongqi Lin, Ming Chen, Maobai Liu, Hongqiang Qiu, Yu Cheng
{"title":"Population Pharmacokinetics-Based Evaluation of Ceftazidime-Avibactam Dosing Regimens in Critically and Non-Critically Ill Patients With Carbapenem-Resistant <i>Klebsiella pneumoniae</i>.","authors":"Yiying Chen, Bo Chen, Yingbin Huang, Xueyong Li, Junnan Wu, Rongqi Lin, Ming Chen, Maobai Liu, Hongqiang Qiu, Yu Cheng","doi":"10.2147/IDR.S495279","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to describe the population pharmacokinetics (PopPK) of ceftazidime-avibactam (CAZ-AVI) in adult patients, and to develop optimal dosing regimens for both non-critically ill and critically ill patients by combining different pharmacokinetic/pharmacodynamic (PK/PD) targets.</p><p><strong>Patients and methods: </strong>A prospective, single-center study involving patients who were infected with CRKP and received CAZ-AVI therapy was conducted. Nonlinear mixed-effect modeling was used to develop a PopPK model. The optimal dosing regimen was assessed using Monte Carlo simulation.</p><p><strong>Results: </strong>The PopPK analysis of CAZ-AVI included 91 steady-state concentrations from 45 adult patients. The data were modeled using a one-compartment model. The typical population values of CAZ and AVI clearances were 2.96 L/h and 3.09 L/h, and the volumes of distribution were 17.76 L and 18.25 L, respectively. Our study showed that creatinine clearance (CrCL) calculated using the Cockcroft-Gault equation significantly affected the pharmacokinetics of CAZ-AVI. The Monte Carlo simulation optimized the dosing regimen for both non-critically ill and critically ill patients with varying renal functions, providing detailed supplements to the instructions.</p><p><strong>Conclusion: </strong>Our study established a PopPK model for CAZ-AVI and proposed a reference for dosing regimen adjustment based on the severity of the disease and renal functional status.</p>","PeriodicalId":13577,"journal":{"name":"Infection and Drug Resistance","volume":"18 ","pages":"941-955"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846486/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection and Drug Resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IDR.S495279","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aimed to describe the population pharmacokinetics (PopPK) of ceftazidime-avibactam (CAZ-AVI) in adult patients, and to develop optimal dosing regimens for both non-critically ill and critically ill patients by combining different pharmacokinetic/pharmacodynamic (PK/PD) targets.
Patients and methods: A prospective, single-center study involving patients who were infected with CRKP and received CAZ-AVI therapy was conducted. Nonlinear mixed-effect modeling was used to develop a PopPK model. The optimal dosing regimen was assessed using Monte Carlo simulation.
Results: The PopPK analysis of CAZ-AVI included 91 steady-state concentrations from 45 adult patients. The data were modeled using a one-compartment model. The typical population values of CAZ and AVI clearances were 2.96 L/h and 3.09 L/h, and the volumes of distribution were 17.76 L and 18.25 L, respectively. Our study showed that creatinine clearance (CrCL) calculated using the Cockcroft-Gault equation significantly affected the pharmacokinetics of CAZ-AVI. The Monte Carlo simulation optimized the dosing regimen for both non-critically ill and critically ill patients with varying renal functions, providing detailed supplements to the instructions.
Conclusion: Our study established a PopPK model for CAZ-AVI and proposed a reference for dosing regimen adjustment based on the severity of the disease and renal functional status.
期刊介绍:
About Journal
Editors
Peer Reviewers
Articles
Article Publishing Charges
Aims and Scope
Call For Papers
ISSN: 1178-6973
Editor-in-Chief: Professor Suresh Antony
An international, peer-reviewed, open access journal that focuses on the optimal treatment of infection (bacterial, fungal and viral) and the development and institution of preventative strategies to minimize the development and spread of resistance.