Exploring the application of knowledge transfer to sports video data.

IF 2.3 Q2 SPORT SCIENCES
Frontiers in Sports and Active Living Pub Date : 2025-02-07 eCollection Date: 2024-01-01 DOI:10.3389/fspor.2024.1460429
Shahrokh Heidari, Gibran Zazueta, Riki Mitchell, David Arturo Soriano Valdez, Mitchell Rogers, Jiaxuan Wang, Ruigeng Wang, Marcel Noronha, Alfonso Gastelum Strozzi, Mengjie Zhang, Patrice Jean Delmas
{"title":"Exploring the application of knowledge transfer to sports video data.","authors":"Shahrokh Heidari, Gibran Zazueta, Riki Mitchell, David Arturo Soriano Valdez, Mitchell Rogers, Jiaxuan Wang, Ruigeng Wang, Marcel Noronha, Alfonso Gastelum Strozzi, Mengjie Zhang, Patrice Jean Delmas","doi":"10.3389/fspor.2024.1460429","DOIUrl":null,"url":null,"abstract":"<p><p>The application of Artificial Intelligence (AI) and Computer Vision (CV) in sports has generated significant interest in enhancing viewer experience through graphical overlays and predictive analytics, as well as providing valuable insights to coaches. However, more efficient methods are needed that can be applied across different sports without incurring high data annotation or model training costs. A major limitation of training deep learning models on large datasets is the significant resource requirement for reproducing results. Transfer Learning and Zero-Shot Learning (ZSL) offer promising alternatives to this approach. For example, ZSL in player re-identification (a crucial step in more complex sports behavioral analysis) involves re-identifying players in sports videos without having seen examples of those players during the training phase. This study investigates the performance of various ZSL techniques in the context of Rugby League and Netball. We focus on ZSL and player re-identification models that use feature embeddings to measure similarity between players. To support our experiments, we created two comprehensive datasets of broadcast video clips: one with nearly 35,000 frames for Rugby League and another with close to 14,000 frames for Netball, each annotated with player IDs and actions. Our approach leverages pre-trained re-identification models to extract feature embeddings for ZSL evaluation under a challenging testing environmnet. Results demonstrate that models pre-trained on sports player re-identification data outperformed those pre-trained on general person re-identification datasets. Part-based models showed particular promise in handling the challenges of dynamic sports environments, while non-part-based models struggled due to background interference.</p>","PeriodicalId":12716,"journal":{"name":"Frontiers in Sports and Active Living","volume":"6 ","pages":"1460429"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842465/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Sports and Active Living","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspor.2024.1460429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The application of Artificial Intelligence (AI) and Computer Vision (CV) in sports has generated significant interest in enhancing viewer experience through graphical overlays and predictive analytics, as well as providing valuable insights to coaches. However, more efficient methods are needed that can be applied across different sports without incurring high data annotation or model training costs. A major limitation of training deep learning models on large datasets is the significant resource requirement for reproducing results. Transfer Learning and Zero-Shot Learning (ZSL) offer promising alternatives to this approach. For example, ZSL in player re-identification (a crucial step in more complex sports behavioral analysis) involves re-identifying players in sports videos without having seen examples of those players during the training phase. This study investigates the performance of various ZSL techniques in the context of Rugby League and Netball. We focus on ZSL and player re-identification models that use feature embeddings to measure similarity between players. To support our experiments, we created two comprehensive datasets of broadcast video clips: one with nearly 35,000 frames for Rugby League and another with close to 14,000 frames for Netball, each annotated with player IDs and actions. Our approach leverages pre-trained re-identification models to extract feature embeddings for ZSL evaluation under a challenging testing environmnet. Results demonstrate that models pre-trained on sports player re-identification data outperformed those pre-trained on general person re-identification datasets. Part-based models showed particular promise in handling the challenges of dynamic sports environments, while non-part-based models struggled due to background interference.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
7.40%
发文量
459
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信