Development of the early fetal human thalamus: from a protomap to emergent thalamic nuclei.

IF 2.1 4区 医学 Q1 ANATOMY & MORPHOLOGY
Frontiers in Neuroanatomy Pub Date : 2025-02-07 eCollection Date: 2025-01-01 DOI:10.3389/fnana.2025.1530236
Maznah Alhesain, Ayman Alzu'bi, Niveditha Sankar, Charles Smith, Janet Kerwin, Ross Laws, Susan Lindsay, Gavin J Clowry
{"title":"Development of the early fetal human thalamus: from a protomap to emergent thalamic nuclei.","authors":"Maznah Alhesain, Ayman Alzu'bi, Niveditha Sankar, Charles Smith, Janet Kerwin, Ross Laws, Susan Lindsay, Gavin J Clowry","doi":"10.3389/fnana.2025.1530236","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Most of what is known about thalamic development comes from rodent studies, however, the increased proportion of human association cortex has co-evolved with increased thalamocortical connectivity. Higher order thalamic nuclei, relaying information between cortical regions and important in higher cognitive function, are greatly expanded.</p><p><strong>Methods: </strong>This study mapped the emergence of thalamic nuclei in human fetal development (8-16 post conceptional weeks; PCW) by revealing gene expression patterns using in situ hybridization and immunohistochemistry for previously established thalamic development markers.</p><p><strong>Results: </strong>In the proliferative thalamic ventricular zone, OLIG3 and NR2F1 immunoreactivity marked the extent of the thalamus, whereas PAX6 and NR2F2 were expressed in gradients, suggesting an early protomap. This was also the case for post-mitotic transcription factors <i>ZIC4</i>, GBX2, FOXP2 and OTX2 which marked thalamic boundaries but also exhibited opposing gradients with <i>ZIC4</i> expression higher anterior/lateral, and GBX2, FOXP2 and OTX2 higher in posterior/medial. Expression patterns became increasingly compartmentalized as development progressed and by 14 PCW recognizable thalamic nuclei were observed with, for instance, the centromedian nucleus being characterized by high FOXP2 and absent GBX2 expression. SP8-like immunoreactivity was expressed in distinct thalamic locations other than the reticular formation which has not been previously reported. Markers for GABAergic neurons and their precursors revealed the location of the prethalamus and its development into the reticular formation and zona incerta. No GAD67+ neurons were observed in the thalamus at 10 PCW, but by 14 PCW the medial posterior quadrant of the thalamus at various levels was infiltrated by GAD67+/ <i>SOX14</i>+ cells of presumed pretectal/midbrain origin. We compared expression of the neurodevelopmental disease susceptibility gene <i>CNTNAP2</i> to these patterns. It was highly expressed by glutamatergic neurons in many thalamic regions by 14 PCW, sometimes but not always in conjunction with its upstream expression regulator FOXP2.</p><p><strong>Conclusion: </strong>In human discrete thalamic nuclei exhibiting discrete gene expression patterns emerge relatively early from a protomap of gene expression. The migration of GABAergic neurons into the thalamus occurs over a protracted period, first from the midbrain. Disruption of CNTNAP2 activity and function could be hypothezised to have a variety of effects upon thalamic development.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"19 ","pages":"1530236"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842364/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnana.2025.1530236","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Most of what is known about thalamic development comes from rodent studies, however, the increased proportion of human association cortex has co-evolved with increased thalamocortical connectivity. Higher order thalamic nuclei, relaying information between cortical regions and important in higher cognitive function, are greatly expanded.

Methods: This study mapped the emergence of thalamic nuclei in human fetal development (8-16 post conceptional weeks; PCW) by revealing gene expression patterns using in situ hybridization and immunohistochemistry for previously established thalamic development markers.

Results: In the proliferative thalamic ventricular zone, OLIG3 and NR2F1 immunoreactivity marked the extent of the thalamus, whereas PAX6 and NR2F2 were expressed in gradients, suggesting an early protomap. This was also the case for post-mitotic transcription factors ZIC4, GBX2, FOXP2 and OTX2 which marked thalamic boundaries but also exhibited opposing gradients with ZIC4 expression higher anterior/lateral, and GBX2, FOXP2 and OTX2 higher in posterior/medial. Expression patterns became increasingly compartmentalized as development progressed and by 14 PCW recognizable thalamic nuclei were observed with, for instance, the centromedian nucleus being characterized by high FOXP2 and absent GBX2 expression. SP8-like immunoreactivity was expressed in distinct thalamic locations other than the reticular formation which has not been previously reported. Markers for GABAergic neurons and their precursors revealed the location of the prethalamus and its development into the reticular formation and zona incerta. No GAD67+ neurons were observed in the thalamus at 10 PCW, but by 14 PCW the medial posterior quadrant of the thalamus at various levels was infiltrated by GAD67+/ SOX14+ cells of presumed pretectal/midbrain origin. We compared expression of the neurodevelopmental disease susceptibility gene CNTNAP2 to these patterns. It was highly expressed by glutamatergic neurons in many thalamic regions by 14 PCW, sometimes but not always in conjunction with its upstream expression regulator FOXP2.

Conclusion: In human discrete thalamic nuclei exhibiting discrete gene expression patterns emerge relatively early from a protomap of gene expression. The migration of GABAergic neurons into the thalamus occurs over a protracted period, first from the midbrain. Disruption of CNTNAP2 activity and function could be hypothezised to have a variety of effects upon thalamic development.

早期胎儿人类丘脑的发育:从原图到突现丘脑核。
大多数关于丘脑发育的知识来自啮齿动物的研究,然而,人类关联皮层比例的增加与丘脑皮质连通性的增加共同进化。高阶丘脑核在皮层区域之间传递信息,在高级认知功能中起重要作用。方法:本研究绘制了人类胎儿发育(孕后8-16周;PCW)通过原位杂交和免疫组织化学揭示基因表达模式,为先前建立的丘脑发育标志物。结果:在增殖性丘脑室区,OLIG3和NR2F1的免疫反应性标志着丘脑的程度,而PAX6和NR2F2呈梯度表达,提示早期的原图。有丝分裂后转录因子ZIC4、GBX2、FOXP2和OTX2也是如此,它们标志着丘脑边界,但也表现出相反的梯度,ZIC4在前/外侧表达较高,GBX2、FOXP2和OTX2在后/内侧表达较高。随着发育的进展,表达模式变得越来越区隔化,到14 PCW时,观察到可识别的丘脑核,例如,中心核的特点是FOXP2高表达,而GBX2不表达。sp8样免疫反应性在不同的丘脑位置表达,而不是网状结构,这在以前没有报道过。gaba能神经元及其前体的标记物揭示了丘脑前体的位置及其向网状结构和网状带的发育。10 PCW时,丘脑未观察到GAD67+神经元,但14 PCW时,丘脑内侧后象限不同水平的GAD67+/ SOX14+细胞浸润,推测其起源于前直肠/中脑。我们比较了神经发育疾病易感基因CNTNAP2与这些模式的表达。它在许多丘脑区域的谷氨酸能神经元中通过14 PCW高度表达,有时但并不总是与其上游表达调节因子FOXP2结合。结论:在人类离散的丘脑核中,离散的基因表达模式较早地出现在基因表达原图中。gaba能神经元向丘脑的迁移需要很长时间,首先从中脑开始。CNTNAP2活性和功能的破坏可能会对丘脑发育产生各种影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neuroanatomy
Frontiers in Neuroanatomy ANATOMY & MORPHOLOGY-NEUROSCIENCES
CiteScore
4.70
自引率
3.40%
发文量
122
审稿时长
>12 weeks
期刊介绍: Frontiers in Neuroanatomy publishes rigorously peer-reviewed research revealing important aspects of the anatomical organization of all nervous systems across all species. Specialty Chief Editor Javier DeFelipe at the Cajal Institute (CSIC) is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信