Caffeine Sodium Benzoate Promotes Endothelial Dysfunction of Human Umbilical Vein Endothelial Cells by Promoting M1 Macrophage Polarization.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tianwei Yu, Jiale Wei, Lili Tian, Weixin Li, Rong Guo, Guohong Wang, Guoying Fan, Suriguga, Huiying Zhao, Feiya Suo, Hao Yang, Quanzhi Yan, Zhenfei Wang, Junqing Liang
{"title":"Caffeine Sodium Benzoate Promotes Endothelial Dysfunction of Human Umbilical Vein Endothelial Cells by Promoting M1 Macrophage Polarization.","authors":"Tianwei Yu, Jiale Wei, Lili Tian, Weixin Li, Rong Guo, Guohong Wang, Guoying Fan, Suriguga, Huiying Zhao, Feiya Suo, Hao Yang, Quanzhi Yan, Zhenfei Wang, Junqing Liang","doi":"10.1007/s12033-025-01391-y","DOIUrl":null,"url":null,"abstract":"<p><p>Our previous study uncovered that long-term abuse of caffeine sodium benzoate (CSB) could lead to dysfunction in human umbilical vein endothelial cells (HUVECs). However, the mechanism by which CSB induced endothelial dysfunction remains largely unstudied. CSB containing serum (CSB-CS) was collected from patients under long-term CSB inhalation. RAW264.7 cells were treated with different concentrations of CSB-CS, after which the conditioned medium (CM) was collected and cultured with HUVECs. The migration, tube formation, and senescence of HUVECs were evaluated. CSB-CS could induce polarization of RAW264.7 cells toward the M1 phenotype, as evidenced by the elevated CD86 and iNOS levels. Additionally, the CM from CSB-treated RAW264.7 cells notably suppressed the migration, tube formation, and induced cell senescence and endothelial dysfunction in HUVECs. Moreover, the CM from CSB-treated RAW264.7 cells greatly reduced mitochondrial membrane potential level, increased the ROS production, reduced OPA1 levels, but elevated DRP1 levels in HUVECs, leading to mitochondrial fission and dysfunction. Meanwhile, the CM from CSB-treated RAW264.7 cells remarkably reduced p-AKT and p-GSK3β levels in HUVECs. Notably, promotion of mitochondrial fusion by MASM7 could mitigate mitochondrial dysfunction and endothelial dysfunction in HUVECs induced by the CM from CSB-treated RAW264.7 cells. Collectively, we found that CSB could induce mitochondrial dysfunction in HUVECs by the polarization of pro-inflammatory M1 macrophages, resulting in endothelial dysfunction. These findings may provide a foundational basis for developing treatments for diseases associated with CSB.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-025-01391-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Our previous study uncovered that long-term abuse of caffeine sodium benzoate (CSB) could lead to dysfunction in human umbilical vein endothelial cells (HUVECs). However, the mechanism by which CSB induced endothelial dysfunction remains largely unstudied. CSB containing serum (CSB-CS) was collected from patients under long-term CSB inhalation. RAW264.7 cells were treated with different concentrations of CSB-CS, after which the conditioned medium (CM) was collected and cultured with HUVECs. The migration, tube formation, and senescence of HUVECs were evaluated. CSB-CS could induce polarization of RAW264.7 cells toward the M1 phenotype, as evidenced by the elevated CD86 and iNOS levels. Additionally, the CM from CSB-treated RAW264.7 cells notably suppressed the migration, tube formation, and induced cell senescence and endothelial dysfunction in HUVECs. Moreover, the CM from CSB-treated RAW264.7 cells greatly reduced mitochondrial membrane potential level, increased the ROS production, reduced OPA1 levels, but elevated DRP1 levels in HUVECs, leading to mitochondrial fission and dysfunction. Meanwhile, the CM from CSB-treated RAW264.7 cells remarkably reduced p-AKT and p-GSK3β levels in HUVECs. Notably, promotion of mitochondrial fusion by MASM7 could mitigate mitochondrial dysfunction and endothelial dysfunction in HUVECs induced by the CM from CSB-treated RAW264.7 cells. Collectively, we found that CSB could induce mitochondrial dysfunction in HUVECs by the polarization of pro-inflammatory M1 macrophages, resulting in endothelial dysfunction. These findings may provide a foundational basis for developing treatments for diseases associated with CSB.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信