{"title":"Caffeine Sodium Benzoate Promotes Endothelial Dysfunction of Human Umbilical Vein Endothelial Cells by Promoting M1 Macrophage Polarization.","authors":"Tianwei Yu, Jiale Wei, Lili Tian, Weixin Li, Rong Guo, Guohong Wang, Guoying Fan, Suriguga, Huiying Zhao, Feiya Suo, Hao Yang, Quanzhi Yan, Zhenfei Wang, Junqing Liang","doi":"10.1007/s12033-025-01391-y","DOIUrl":null,"url":null,"abstract":"<p><p>Our previous study uncovered that long-term abuse of caffeine sodium benzoate (CSB) could lead to dysfunction in human umbilical vein endothelial cells (HUVECs). However, the mechanism by which CSB induced endothelial dysfunction remains largely unstudied. CSB containing serum (CSB-CS) was collected from patients under long-term CSB inhalation. RAW264.7 cells were treated with different concentrations of CSB-CS, after which the conditioned medium (CM) was collected and cultured with HUVECs. The migration, tube formation, and senescence of HUVECs were evaluated. CSB-CS could induce polarization of RAW264.7 cells toward the M1 phenotype, as evidenced by the elevated CD86 and iNOS levels. Additionally, the CM from CSB-treated RAW264.7 cells notably suppressed the migration, tube formation, and induced cell senescence and endothelial dysfunction in HUVECs. Moreover, the CM from CSB-treated RAW264.7 cells greatly reduced mitochondrial membrane potential level, increased the ROS production, reduced OPA1 levels, but elevated DRP1 levels in HUVECs, leading to mitochondrial fission and dysfunction. Meanwhile, the CM from CSB-treated RAW264.7 cells remarkably reduced p-AKT and p-GSK3β levels in HUVECs. Notably, promotion of mitochondrial fusion by MASM7 could mitigate mitochondrial dysfunction and endothelial dysfunction in HUVECs induced by the CM from CSB-treated RAW264.7 cells. Collectively, we found that CSB could induce mitochondrial dysfunction in HUVECs by the polarization of pro-inflammatory M1 macrophages, resulting in endothelial dysfunction. These findings may provide a foundational basis for developing treatments for diseases associated with CSB.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-025-01391-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Our previous study uncovered that long-term abuse of caffeine sodium benzoate (CSB) could lead to dysfunction in human umbilical vein endothelial cells (HUVECs). However, the mechanism by which CSB induced endothelial dysfunction remains largely unstudied. CSB containing serum (CSB-CS) was collected from patients under long-term CSB inhalation. RAW264.7 cells were treated with different concentrations of CSB-CS, after which the conditioned medium (CM) was collected and cultured with HUVECs. The migration, tube formation, and senescence of HUVECs were evaluated. CSB-CS could induce polarization of RAW264.7 cells toward the M1 phenotype, as evidenced by the elevated CD86 and iNOS levels. Additionally, the CM from CSB-treated RAW264.7 cells notably suppressed the migration, tube formation, and induced cell senescence and endothelial dysfunction in HUVECs. Moreover, the CM from CSB-treated RAW264.7 cells greatly reduced mitochondrial membrane potential level, increased the ROS production, reduced OPA1 levels, but elevated DRP1 levels in HUVECs, leading to mitochondrial fission and dysfunction. Meanwhile, the CM from CSB-treated RAW264.7 cells remarkably reduced p-AKT and p-GSK3β levels in HUVECs. Notably, promotion of mitochondrial fusion by MASM7 could mitigate mitochondrial dysfunction and endothelial dysfunction in HUVECs induced by the CM from CSB-treated RAW264.7 cells. Collectively, we found that CSB could induce mitochondrial dysfunction in HUVECs by the polarization of pro-inflammatory M1 macrophages, resulting in endothelial dysfunction. These findings may provide a foundational basis for developing treatments for diseases associated with CSB.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.