Establishment of an Acute Karoshi Rat Model and Its Metabolic, Functional and Morphological Changes.

Q3 Medicine
Xia Liu, Jia-Min Li, Yong-Xia Zheng, Xu-Dong Xiao, Xiao-Jun Yu
{"title":"Establishment of an Acute Karoshi Rat Model and Its Metabolic, Functional and Morphological Changes.","authors":"Xia Liu, Jia-Min Li, Yong-Xia Zheng, Xu-Dong Xiao, Xiao-Jun Yu","doi":"10.12116/j.issn.1004-5619.2022.421007","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To investigate the occurrence and mechanism of acute Karoshi and explore its forensic identification.</p><p><strong>Methods: </strong>SD rats were divided into the control group (<i>n</i>=15) and experimental groups (<i>n</i>=45, acute Karoshi group and overwork survival group). A severe fatigue model was established by combining forced swimming under load to exhaustion and sleep deprivation. Their daily activities, diets, weight, respiratory functions, electrocardiogram and echocardiography were recorded. After the rats were sacrificed, samples were collected at autopsies. HE staining was used to observe the pathological morphology, and GC-MS was used to detect the changes of substance metabolism in serum, myocardium and liver.</p><p><strong>Results: </strong>The mortality rate of the experimental group was 33.3%. There were decreases of aminobutyric acid and arachidonic acid in myocardium tissues, decreases of urea and increases of methionine and phenylalanine in serum. In liver tissues, the content of amino acids sush as histidine increased. The blood biochemical testing showed increases of alanine aminotransferase, aspartate aminotransferase, creatine kinase and creatine kinase isoenzymes and decreases of glucose and uric acid. There were interferences of energy metabolism pathways in serum, heart, and liver tissues. After three days, the experimental group developed cardiac conduction block and ventricular arrhythmia. Ventricular fibrillation and ventricular flutter appeared in acute Karoshi group. Echocardiogram showed ejection fraction and left ventricular short axis shortening rate decreased. The histological examination showed granular swelling and sarcoplasmic condensation in myocardium and increased dark neurons in the brain stem. The combination of differential metabolites of serum urea, methionine and phenylalanine was highly correlated with Karoshi with a diagnostic rate of 90.6%.</p><p><strong>Conclusions: </strong>Acute Karoshi can trigger a cascade reaction of metabolic, functional and morphological changes. The mechanism of death, especially central failure and sudden cardiac death, may be associated with multi-organ failure.</p>","PeriodicalId":12317,"journal":{"name":"法医学杂志","volume":"40 5","pages":"439-446"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"法医学杂志","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12116/j.issn.1004-5619.2022.421007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To investigate the occurrence and mechanism of acute Karoshi and explore its forensic identification.

Methods: SD rats were divided into the control group (n=15) and experimental groups (n=45, acute Karoshi group and overwork survival group). A severe fatigue model was established by combining forced swimming under load to exhaustion and sleep deprivation. Their daily activities, diets, weight, respiratory functions, electrocardiogram and echocardiography were recorded. After the rats were sacrificed, samples were collected at autopsies. HE staining was used to observe the pathological morphology, and GC-MS was used to detect the changes of substance metabolism in serum, myocardium and liver.

Results: The mortality rate of the experimental group was 33.3%. There were decreases of aminobutyric acid and arachidonic acid in myocardium tissues, decreases of urea and increases of methionine and phenylalanine in serum. In liver tissues, the content of amino acids sush as histidine increased. The blood biochemical testing showed increases of alanine aminotransferase, aspartate aminotransferase, creatine kinase and creatine kinase isoenzymes and decreases of glucose and uric acid. There were interferences of energy metabolism pathways in serum, heart, and liver tissues. After three days, the experimental group developed cardiac conduction block and ventricular arrhythmia. Ventricular fibrillation and ventricular flutter appeared in acute Karoshi group. Echocardiogram showed ejection fraction and left ventricular short axis shortening rate decreased. The histological examination showed granular swelling and sarcoplasmic condensation in myocardium and increased dark neurons in the brain stem. The combination of differential metabolites of serum urea, methionine and phenylalanine was highly correlated with Karoshi with a diagnostic rate of 90.6%.

Conclusions: Acute Karoshi can trigger a cascade reaction of metabolic, functional and morphological changes. The mechanism of death, especially central failure and sudden cardiac death, may be associated with multi-organ failure.

求助全文
约1分钟内获得全文 求助全文
来源期刊
法医学杂志
法医学杂志 Medicine-Pathology and Forensic Medicine
CiteScore
1.50
自引率
0.00%
发文量
0
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信