Local Delivery of Lipid-based Nanoparticles Containing Microbial Nucleic Acid for Osteoimmunomodulation.

IF 4.3 3区 医学 Q1 PHARMACOLOGY & PHARMACY
N R Rahmani, F Jahanmard, A Hassani Najafabadi, J Flapper, O Dogan, A Khodaei, G Storm, M Croes, M C Kruyt, D Gawlitta, H Weinans, E Mastrobattista, S Amin Yavari
{"title":"Local Delivery of Lipid-based Nanoparticles Containing Microbial Nucleic Acid for Osteoimmunomodulation.","authors":"N R Rahmani, F Jahanmard, A Hassani Najafabadi, J Flapper, O Dogan, A Khodaei, G Storm, M Croes, M C Kruyt, D Gawlitta, H Weinans, E Mastrobattista, S Amin Yavari","doi":"10.1016/j.ejps.2025.107050","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoimmunomodulation is a strategy to promote bone regeneration in implants by modifying the immune environment. CpG-containing oligonucleotides type C (CpG ODN C) CpG ODN C and Polyinosinic:polycytidylic acid (Poly[I:C]) are analogs of microbial nucleic acids that have been studied for various immunotherapeutic applications. This research investigates the potential of CpG ODN C and Poly(I:C) as an osteoimmunomodulatory agent for bone regenerative purposes. We encapsulated each nucleic acid in a lipid-based nanoparticle to facilitate the delivery into intracellular pathogen recognition receptors in immune cells. The lipid-based nanoparticles were ±250 nm in size with a negative charge (-36 to -40 mV) and an encapsulation efficiency of ±60%. Lipid-based nanoparticles containing nucleic acids, Lip/CpG ODN C and Lip/Poly(I:C), increased the production of TNF, IL-6, and IL-10 by primary human macrophages compared to free-form nucleic acids. Conditioned medium from macrophages treated with CpG ODN C (10 µg/ml) and Lip/CpG ODN C (0.1, 1, and 10 µg/ml) promoted osteoblast differentiation of human mesenchymal stromal cells by 2.6-fold and 3-fold, respectively; no effect was seen for Lip/Poly(I:C). Bone implants were prepared, consisting of biphasic calcium phosphate scaffold, bone morphogenetic protein (BMP) 2, and lipid-based nanoparticles suspended in gelatin methacryloyl (GelMA) hydrogel. Implants were evaluated for de novo bone formation in an extra-skeletal implantation model in rabbits for 5 weeks. Based on the particles suspended in GelMA, six groups of implants were prepared: Lip/CpG ODN C, Lip/Poly(I:C), Lip (empty), CpG ODN C, Poly(I:C), and a control group consisting of empty GelMA. After 5 weeks, healthy bone tissue formed in all of the implants with active osteoblast and osteoclast activity, however, the amount of new bone volume and scaffold degradation were similar for all implants. We suggest that the working concentrations of the nucleic acids employed were inadequate to induce a relevant inflammatory response. Additionally, the dosage of BMP-2 used may potentially mask the immune-stimulatory effect. Lip/CpG ODN C holds potential as a bioactive agent for osteoimmunomodulation, although further in vivo demonstration should corroborate the current in vitro findings.</p>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":" ","pages":"107050"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejps.2025.107050","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoimmunomodulation is a strategy to promote bone regeneration in implants by modifying the immune environment. CpG-containing oligonucleotides type C (CpG ODN C) CpG ODN C and Polyinosinic:polycytidylic acid (Poly[I:C]) are analogs of microbial nucleic acids that have been studied for various immunotherapeutic applications. This research investigates the potential of CpG ODN C and Poly(I:C) as an osteoimmunomodulatory agent for bone regenerative purposes. We encapsulated each nucleic acid in a lipid-based nanoparticle to facilitate the delivery into intracellular pathogen recognition receptors in immune cells. The lipid-based nanoparticles were ±250 nm in size with a negative charge (-36 to -40 mV) and an encapsulation efficiency of ±60%. Lipid-based nanoparticles containing nucleic acids, Lip/CpG ODN C and Lip/Poly(I:C), increased the production of TNF, IL-6, and IL-10 by primary human macrophages compared to free-form nucleic acids. Conditioned medium from macrophages treated with CpG ODN C (10 µg/ml) and Lip/CpG ODN C (0.1, 1, and 10 µg/ml) promoted osteoblast differentiation of human mesenchymal stromal cells by 2.6-fold and 3-fold, respectively; no effect was seen for Lip/Poly(I:C). Bone implants were prepared, consisting of biphasic calcium phosphate scaffold, bone morphogenetic protein (BMP) 2, and lipid-based nanoparticles suspended in gelatin methacryloyl (GelMA) hydrogel. Implants were evaluated for de novo bone formation in an extra-skeletal implantation model in rabbits for 5 weeks. Based on the particles suspended in GelMA, six groups of implants were prepared: Lip/CpG ODN C, Lip/Poly(I:C), Lip (empty), CpG ODN C, Poly(I:C), and a control group consisting of empty GelMA. After 5 weeks, healthy bone tissue formed in all of the implants with active osteoblast and osteoclast activity, however, the amount of new bone volume and scaffold degradation were similar for all implants. We suggest that the working concentrations of the nucleic acids employed were inadequate to induce a relevant inflammatory response. Additionally, the dosage of BMP-2 used may potentially mask the immune-stimulatory effect. Lip/CpG ODN C holds potential as a bioactive agent for osteoimmunomodulation, although further in vivo demonstration should corroborate the current in vitro findings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
2.20%
发文量
248
审稿时长
50 days
期刊介绍: The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development. More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making. Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信