Understanding stock market instability via graph auto-encoders.

IF 3 2区 计算机科学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
EPJ Data Science Pub Date : 2025-01-01 Epub Date: 2025-02-19 DOI:10.1140/epjds/s13688-025-00523-3
Dragos Gorduza, Stefan Zohren, Xiaowen Dong
{"title":"Understanding stock market instability via graph auto-encoders.","authors":"Dragos Gorduza, Stefan Zohren, Xiaowen Dong","doi":"10.1140/epjds/s13688-025-00523-3","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding stock market instability is a key question in financial management as practitioners seek to forecast breakdowns in long-run asset co-movement patterns which expose portfolios to rapid and devastating collapses in value. These disruptions are linked to changes in the structure of market wide stock correlations which increase the risk of high volatility shocks. The structure of these co-movements can be described as a network where companies are represented by nodes while edges capture correlations between their price movements. Co-movement breakdowns then manifest as abrupt changes in the topological structure of this network. Measuring the scale of this change and learning a timely indicator of breakdowns is central in understanding both financial stability and volatility forecasting. We propose to use the edge reconstruction accuracy of a graph auto-encoder as an indicator for how homogeneous connections between assets are, which we use, based on the literature of financial network analysis, as a proxy to infer market volatility. We show, through our experiments on the Standard and Poor's index over the 2015-2022 period, that the reconstruction errors from our model correlate with volatility spikes and can be used to improve out-of-sample autoregressive modeling of volatility. Our results demonstrate that market instability can be predicted by changes in the homogeneity in connections of the financial network which expands the understanding of instability in the stock market. We discuss the implications of this graph machine learning-based volatility estimation for policy targeted at ensuring financial market stability.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"14 1","pages":"13"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839781/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-025-00523-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding stock market instability is a key question in financial management as practitioners seek to forecast breakdowns in long-run asset co-movement patterns which expose portfolios to rapid and devastating collapses in value. These disruptions are linked to changes in the structure of market wide stock correlations which increase the risk of high volatility shocks. The structure of these co-movements can be described as a network where companies are represented by nodes while edges capture correlations between their price movements. Co-movement breakdowns then manifest as abrupt changes in the topological structure of this network. Measuring the scale of this change and learning a timely indicator of breakdowns is central in understanding both financial stability and volatility forecasting. We propose to use the edge reconstruction accuracy of a graph auto-encoder as an indicator for how homogeneous connections between assets are, which we use, based on the literature of financial network analysis, as a proxy to infer market volatility. We show, through our experiments on the Standard and Poor's index over the 2015-2022 period, that the reconstruction errors from our model correlate with volatility spikes and can be used to improve out-of-sample autoregressive modeling of volatility. Our results demonstrate that market instability can be predicted by changes in the homogeneity in connections of the financial network which expands the understanding of instability in the stock market. We discuss the implications of this graph machine learning-based volatility estimation for policy targeted at ensuring financial market stability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Data Science
EPJ Data Science MATHEMATICS, INTERDISCIPLINARY APPLICATIONS -
CiteScore
6.10
自引率
5.60%
发文量
53
审稿时长
13 weeks
期刊介绍: EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信