{"title":"Polycaprolactam microplastics reduce allelopathic potential of Iris pseudacorus via toxic effects on stimulatory bacteria.","authors":"Shengpeng Zuo, Qing Zhang, Shuo Yang, Huimei Wang","doi":"10.1007/s10646-025-02862-3","DOIUrl":null,"url":null,"abstract":"<p><p>Many studies have investigated the toxic effects of microplastics (MPs) ingested by aquatic animals, but the effects of MPs that adhere to the roots of macrophytes require further exploration. Thus, the present study investigated the dose-dependent toxic effects of adding 10-500 mg/kg of polycaprolactam microplastics (PCM) on allelopathic cyanobacterial inhibition by a wetland macrophyte due to the influence on rhizosphere bacteria in a pot trial. First, comparisons of sterilized and unsterilized Iris pseudacorus rhizosphere soil showed that the unsterilized soil could enhance the root activity and allelopathic inhibition of Microcystis aeruginosa cyanobacteria. Furthermore, adding 50-100 mg/kg PCM to the unsterilized soil significantly altered the abundances of many types of bacteria, and decreased the root activity and bacterial biodiversity in the rhizosphere. Importantly, PCM changed the secondary metabolites profile in the roots, as well as decreasing production of the allelochemical palmitic acid and the allelopathic potential of I. pseudacorus. Moreover, a dominant strain of functional bacterium AAP51 was identified as an allelopathic promoter, isolated, and successfully inoculated into the sterilized soil. The decomposition of PCM produced the toxic monomer caprolactam in the rhizosphere soil at an average rate of 0.067 mg/kg·d under treatment with 50 mg/kg PCM. Toxicological testing showed that 5 mg/kg caprolactam inhibited the activities of the dominant bacteria and expression of the allelopathic gene FAD2 to weaken the allelopathic effect of I. pseudacorus. Thus, the findings obtained in this study indicate that PCM inhibited the allelopathic potential of the macrophyte due to the release of toxic caprolactam damaging bacteria in the rhizosphere. Consequently, it is necessary to remove MP pollutants from aquatic ecosystems in order to maintain the strong allelopathic potential of macrophytes and efficiently control cyanobacterial blooms.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-025-02862-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many studies have investigated the toxic effects of microplastics (MPs) ingested by aquatic animals, but the effects of MPs that adhere to the roots of macrophytes require further exploration. Thus, the present study investigated the dose-dependent toxic effects of adding 10-500 mg/kg of polycaprolactam microplastics (PCM) on allelopathic cyanobacterial inhibition by a wetland macrophyte due to the influence on rhizosphere bacteria in a pot trial. First, comparisons of sterilized and unsterilized Iris pseudacorus rhizosphere soil showed that the unsterilized soil could enhance the root activity and allelopathic inhibition of Microcystis aeruginosa cyanobacteria. Furthermore, adding 50-100 mg/kg PCM to the unsterilized soil significantly altered the abundances of many types of bacteria, and decreased the root activity and bacterial biodiversity in the rhizosphere. Importantly, PCM changed the secondary metabolites profile in the roots, as well as decreasing production of the allelochemical palmitic acid and the allelopathic potential of I. pseudacorus. Moreover, a dominant strain of functional bacterium AAP51 was identified as an allelopathic promoter, isolated, and successfully inoculated into the sterilized soil. The decomposition of PCM produced the toxic monomer caprolactam in the rhizosphere soil at an average rate of 0.067 mg/kg·d under treatment with 50 mg/kg PCM. Toxicological testing showed that 5 mg/kg caprolactam inhibited the activities of the dominant bacteria and expression of the allelopathic gene FAD2 to weaken the allelopathic effect of I. pseudacorus. Thus, the findings obtained in this study indicate that PCM inhibited the allelopathic potential of the macrophyte due to the release of toxic caprolactam damaging bacteria in the rhizosphere. Consequently, it is necessary to remove MP pollutants from aquatic ecosystems in order to maintain the strong allelopathic potential of macrophytes and efficiently control cyanobacterial blooms.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.