Sequence-dependent predictive coding during the learning and rewiring of skills.

IF 2.9 2区 医学 Q2 NEUROSCIENCES
Ádám Takács, Teodóra Vékony, Felipe Pedraza, Frederic Haesebaert, Barbara Tillmann, Christian Beste, Dezső Németh
{"title":"Sequence-dependent predictive coding during the learning and rewiring of skills.","authors":"Ádám Takács, Teodóra Vékony, Felipe Pedraza, Frederic Haesebaert, Barbara Tillmann, Christian Beste, Dezső Németh","doi":"10.1093/cercor/bhaf025","DOIUrl":null,"url":null,"abstract":"<p><p>In the constantly changing environment that characterizes our daily lives, the ability to predict and adapt to new circumstances is crucial. This study examines the influence of sequence and knowledge adaptiveness on predictive coding in skill learning and rewiring. Participants were exposed to two different visuomotor sequences with overlapping probabilities. By applying temporal decomposition and multivariate pattern analysis, we dissected the neural underpinnings across different levels of signal coding. The study provides neurophysiological evidence for the influence of knowledge adaptiveness on shaping predictive coding, revealing that these are intricately linked and predominantly manifest at the abstract and motor coding levels. These findings challenge the traditional view of a competitive relationship between learning context and knowledge, suggesting instead a hierarchical integration where their properties are processed simultaneously. This integration facilitates the adaptive reuse of existing knowledge in the face of new learning. By shedding light on the mechanisms of predictive coding in visuomotor sequences, this research contributes to a deeper understanding of how the brain navigates and adapts to environmental changes, offering insights into the foundational processes that underlie learning and adaptation in dynamic contexts.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the constantly changing environment that characterizes our daily lives, the ability to predict and adapt to new circumstances is crucial. This study examines the influence of sequence and knowledge adaptiveness on predictive coding in skill learning and rewiring. Participants were exposed to two different visuomotor sequences with overlapping probabilities. By applying temporal decomposition and multivariate pattern analysis, we dissected the neural underpinnings across different levels of signal coding. The study provides neurophysiological evidence for the influence of knowledge adaptiveness on shaping predictive coding, revealing that these are intricately linked and predominantly manifest at the abstract and motor coding levels. These findings challenge the traditional view of a competitive relationship between learning context and knowledge, suggesting instead a hierarchical integration where their properties are processed simultaneously. This integration facilitates the adaptive reuse of existing knowledge in the face of new learning. By shedding light on the mechanisms of predictive coding in visuomotor sequences, this research contributes to a deeper understanding of how the brain navigates and adapts to environmental changes, offering insights into the foundational processes that underlie learning and adaptation in dynamic contexts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cerebral cortex
Cerebral cortex 医学-神经科学
CiteScore
6.30
自引率
8.10%
发文量
510
审稿时长
2 months
期刊介绍: Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included. The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信