Computational model for control of hand movement in Parkinson's disease using deep brain stimulation.

IF 1.7 4区 医学 Q4 NEUROSCIENCES
Maibam Pooya Chanu, Gajendra Kumar, Ramana Kumar Vinjamuri, Nayan M Kakoty
{"title":"Computational model for control of hand movement in Parkinson's disease using deep brain stimulation.","authors":"Maibam Pooya Chanu, Gajendra Kumar, Ramana Kumar Vinjamuri, Nayan M Kakoty","doi":"10.1007/s00221-025-07026-7","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a progressive neurological disorder characterized by the loss of dopamine in the substantia nigra resulting in movement disorder. Although several computational models have been proposed to explore different aspects of PD, a comprehensive computational model of PD and its suppression remains elusive. This study presents a computational model of the Cortico-Basal Ganglia Thalamus (CBGT) network, and demonstrates the effects of close-loop deep brain stimulation (DBS) as a potential therapeutic intervention. The model focuses on addressing abnormal brain wave patterns associated with PD-related hand movement through DBS. To assess the model performance, a three-link manipulator is incorporated into the CBGT model, with the joints corresponding to shoulder, elbow and wrist of human arm. PD-like symptoms are simulated by modulating the dopaminergic input. The striatal (STR) neurons were selected as target neurons for application of DBS. A proportional-integral (PI) controller regulates DBS at different frequencies in striatal neurons based on errors in manipulator movement. The effectiveness of DBS at STR was compared with the DBS at globus pallidus externus and subthalamic nucleus. DBS suppressed neuronal signal oscillations at 13-30 Hz and reduced abnormal hand movements. The results demonstrate that application of DBS at STR could correct manipulator movement. Additionally, the trajectory of movement by the end-effector were compared with DBS at different target neurons in CBGT. These findings suggest the therapeutic potential of the proposed computational model in development of neuroprosthesis for PD patients.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":"243 3","pages":"74"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-025-07026-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's disease (PD) is a progressive neurological disorder characterized by the loss of dopamine in the substantia nigra resulting in movement disorder. Although several computational models have been proposed to explore different aspects of PD, a comprehensive computational model of PD and its suppression remains elusive. This study presents a computational model of the Cortico-Basal Ganglia Thalamus (CBGT) network, and demonstrates the effects of close-loop deep brain stimulation (DBS) as a potential therapeutic intervention. The model focuses on addressing abnormal brain wave patterns associated with PD-related hand movement through DBS. To assess the model performance, a three-link manipulator is incorporated into the CBGT model, with the joints corresponding to shoulder, elbow and wrist of human arm. PD-like symptoms are simulated by modulating the dopaminergic input. The striatal (STR) neurons were selected as target neurons for application of DBS. A proportional-integral (PI) controller regulates DBS at different frequencies in striatal neurons based on errors in manipulator movement. The effectiveness of DBS at STR was compared with the DBS at globus pallidus externus and subthalamic nucleus. DBS suppressed neuronal signal oscillations at 13-30 Hz and reduced abnormal hand movements. The results demonstrate that application of DBS at STR could correct manipulator movement. Additionally, the trajectory of movement by the end-effector were compared with DBS at different target neurons in CBGT. These findings suggest the therapeutic potential of the proposed computational model in development of neuroprosthesis for PD patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信