Prebiotic Peptide Synthesis: How Did Longest Peptide Appear?

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yuling Yang, Zhibiao Wang, Jin Bai, Hai Qiao
{"title":"Prebiotic Peptide Synthesis: How Did Longest Peptide Appear?","authors":"Yuling Yang, Zhibiao Wang, Jin Bai, Hai Qiao","doi":"10.1007/s00239-025-10237-9","DOIUrl":null,"url":null,"abstract":"<p><p>The origin of proteins is a fundamental question in the study of the origin of life. Peptides, as the building blocks of proteins, necessarily preceded the first proteins in prebiotic chemical evolution. Prebiotic peptides may have also played crucial roles in early life's evolution, contributing to self-catalysis, interacting with nucleic acids, and stabilizing primitive cell compartments. Longer and more complicated prebiotic peptides often have greater structural flexibility and functional potential to support the emergence and evolution of early life. Since the Miller-Urey experiment demonstrated that amino acids can be synthesized in a prebiotic manner, the prebiotic synthesis route of peptides has garnered increasing attention from researchers. However, it is difficult for amino acids to condense into peptides in aqueous solutions spontaneously. Over the past few decades, researchers have explored various routes of prebiotic peptide synthesis in the plausible prebiotic Earth environment, such as thermal polymerization, clay mineral catalysis, wet-dry cycles, condensing agents, and lipid-mediated. This paper reviews advancements in prebiotic peptide synthesis research and discusses the conditions that may have facilitated the emergence of longer peptides.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-025-10237-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The origin of proteins is a fundamental question in the study of the origin of life. Peptides, as the building blocks of proteins, necessarily preceded the first proteins in prebiotic chemical evolution. Prebiotic peptides may have also played crucial roles in early life's evolution, contributing to self-catalysis, interacting with nucleic acids, and stabilizing primitive cell compartments. Longer and more complicated prebiotic peptides often have greater structural flexibility and functional potential to support the emergence and evolution of early life. Since the Miller-Urey experiment demonstrated that amino acids can be synthesized in a prebiotic manner, the prebiotic synthesis route of peptides has garnered increasing attention from researchers. However, it is difficult for amino acids to condense into peptides in aqueous solutions spontaneously. Over the past few decades, researchers have explored various routes of prebiotic peptide synthesis in the plausible prebiotic Earth environment, such as thermal polymerization, clay mineral catalysis, wet-dry cycles, condensing agents, and lipid-mediated. This paper reviews advancements in prebiotic peptide synthesis research and discusses the conditions that may have facilitated the emergence of longer peptides.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信