Phase-restoring subpixel image registration: enhancing motion detection performance in Fourier-domain optical coherence tomography.

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Journal of Physics D: Applied Physics Pub Date : 2025-04-07 Epub Date: 2025-02-21 DOI:10.1088/1361-6463/adb3b4
Huakun Li, Bingyao Tan, Vimal Prabhu Pandiyan, Veluchamy Amutha Barathi, Ramkumar Sabesan, Leopold Schmetterer, Tong Ling
{"title":"Phase-restoring subpixel image registration: enhancing motion detection performance in Fourier-domain optical coherence tomography.","authors":"Huakun Li, Bingyao Tan, Vimal Prabhu Pandiyan, Veluchamy Amutha Barathi, Ramkumar Sabesan, Leopold Schmetterer, Tong Ling","doi":"10.1088/1361-6463/adb3b4","DOIUrl":null,"url":null,"abstract":"<p><p>Phase-sensitive Fourier-domain optical coherence tomography (FD-OCT) enables <i>in-vivo</i>, label-free imaging of cellular movements with detection sensitivity down to the nanometer scale, and it is widely employed in emerging functional imaging modalities, such as optoretinography (ORG), Doppler OCT, and optical coherence elastography. However, when imaging tissue dynamics <i>in vivo</i>, inter-frame displacement introduces decorrelation noise that compromises motion detection performance, particularly in terms of sensitivity and accuracy. Here, we demonstrate that the displacement-related decorrelation noise in FD-OCT can be accurately corrected by restoring the initial sampling points using our proposed Phase-Restoring Subpixel Image Registration (PRESIR) method. Derived from a general FD-OCT model, the PRESIR method enables translational shifting of complex-valued OCT images over arbitrary displacements with subpixel precision, while accurately restoring phase components. Unlike conventional approaches that shift OCT images either in the spatial domain at the pixel level or in the spatial frequency domain for subpixel correction, our method reconstructs OCT images by correcting axial displacement in the spectral domain (k domain) and lateral displacement in the spatial frequency domain. We validated the PRESIR method through simulations, phantom experiments, and <i>in-vivo</i> ORG in both rodents and human subjects. Our approach significantly reduced decorrelation noise during the imaging of moving samples, achieving phase sensitivity close to the fundamental limit determined by the signal-to-noise ratio.</p>","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"58 14","pages":"145102"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843479/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/adb3b4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Phase-sensitive Fourier-domain optical coherence tomography (FD-OCT) enables in-vivo, label-free imaging of cellular movements with detection sensitivity down to the nanometer scale, and it is widely employed in emerging functional imaging modalities, such as optoretinography (ORG), Doppler OCT, and optical coherence elastography. However, when imaging tissue dynamics in vivo, inter-frame displacement introduces decorrelation noise that compromises motion detection performance, particularly in terms of sensitivity and accuracy. Here, we demonstrate that the displacement-related decorrelation noise in FD-OCT can be accurately corrected by restoring the initial sampling points using our proposed Phase-Restoring Subpixel Image Registration (PRESIR) method. Derived from a general FD-OCT model, the PRESIR method enables translational shifting of complex-valued OCT images over arbitrary displacements with subpixel precision, while accurately restoring phase components. Unlike conventional approaches that shift OCT images either in the spatial domain at the pixel level or in the spatial frequency domain for subpixel correction, our method reconstructs OCT images by correcting axial displacement in the spectral domain (k domain) and lateral displacement in the spatial frequency domain. We validated the PRESIR method through simulations, phantom experiments, and in-vivo ORG in both rodents and human subjects. Our approach significantly reduced decorrelation noise during the imaging of moving samples, achieving phase sensitivity close to the fundamental limit determined by the signal-to-noise ratio.

相位恢复亚像素图像配准:增强傅里叶域光学相干层析成像的运动检测性能。
相敏傅里叶域光学相干断层扫描(FD-OCT)能够在体内对细胞运动进行无标记成像,检测灵敏度低至纳米级,并广泛应用于新兴的功能成像模式,如光视网膜成像(ORG)、多普勒OCT和光学相干弹性成像。然而,当对活体组织动力学成像时,帧间位移会引入去相关噪声,从而影响运动检测性能,特别是在灵敏度和准确性方面。在这里,我们证明了FD-OCT中与位移相关的去相关噪声可以通过使用我们提出的相位恢复亚像素图像配准(PRESIR)方法恢复初始采样点来精确校正。PRESIR方法源自一般的FD-OCT模型,能够以亚像素精度在任意位移上实现复杂值OCT图像的平移,同时准确地恢复相位分量。与传统的在像素级空间域或在空间频域对OCT图像进行亚像素校正的方法不同,我们的方法通过校正频谱域(k域)的轴向位移和空间频域的横向位移来重建OCT图像。我们通过模拟、模拟实验和啮齿类动物和人类体内ORG验证了PRESIR方法。我们的方法显著降低了运动样本成像过程中的去相关噪声,实现了接近由信噪比决定的基本极限的相位灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics D: Applied Physics
Journal of Physics D: Applied Physics 物理-物理:应用
CiteScore
6.80
自引率
8.80%
发文量
835
审稿时长
2.1 months
期刊介绍: This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信