Potential outcome simulation for efficient head-to-head comparison of adaptive dose-finding designs.

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-01-07 DOI:10.1093/biomtc/ujaf012
Michael Sweeting, Daniel Slade, Dan Jackson, Kristian Brock
{"title":"Potential outcome simulation for efficient head-to-head comparison of adaptive dose-finding designs.","authors":"Michael Sweeting, Daniel Slade, Dan Jackson, Kristian Brock","doi":"10.1093/biomtc/ujaf012","DOIUrl":null,"url":null,"abstract":"<p><p>Dose-finding trials are a key component of the drug development process and rely on a statistical design to help inform dosing decisions. Triallists wishing to choose a design require knowledge of operating characteristics of competing methods. This is often assessed using a large-scale simulation study with multiple designs and configurations investigated, which can be time-consuming and therefore limits the scope of the simulation. We introduce a new approach to the design of simulation studies of dose-finding trials. The approach simulates all potential outcomes that individuals could experience at each dose level in the trial. Datasets are simulated in advance and then applied to each of the competing methods to enable a more efficient head-to-head comparison. Furthermore, individual trial datasets can be interrogated to understand when designs deviate in their decision making. In three case-studies, we show sizeable reductions in Monte Carlo error for comparing a performance metric between two competing designs. Efficiency gains depend on the similarity of the designs. Comparing two Phase I/II design variants, with high correlation of recommending the same optimal biologic dose, we show that the new approach requires a simulation study that is approximately 48 times smaller than the conventional approach. Furthermore, advance-simulated trial datasets can be reused to assess the performance of designs across multiple configurations. We recommend researchers consider this more efficient simulation approach in their dose-finding studies and we have updated the R package escalation to help facilitate implementation.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dose-finding trials are a key component of the drug development process and rely on a statistical design to help inform dosing decisions. Triallists wishing to choose a design require knowledge of operating characteristics of competing methods. This is often assessed using a large-scale simulation study with multiple designs and configurations investigated, which can be time-consuming and therefore limits the scope of the simulation. We introduce a new approach to the design of simulation studies of dose-finding trials. The approach simulates all potential outcomes that individuals could experience at each dose level in the trial. Datasets are simulated in advance and then applied to each of the competing methods to enable a more efficient head-to-head comparison. Furthermore, individual trial datasets can be interrogated to understand when designs deviate in their decision making. In three case-studies, we show sizeable reductions in Monte Carlo error for comparing a performance metric between two competing designs. Efficiency gains depend on the similarity of the designs. Comparing two Phase I/II design variants, with high correlation of recommending the same optimal biologic dose, we show that the new approach requires a simulation study that is approximately 48 times smaller than the conventional approach. Furthermore, advance-simulated trial datasets can be reused to assess the performance of designs across multiple configurations. We recommend researchers consider this more efficient simulation approach in their dose-finding studies and we have updated the R package escalation to help facilitate implementation.

自适应剂量测定设计的有效头对头比较的潜在结果模拟。
剂量寻找试验是药物开发过程的一个关键组成部分,依靠统计设计来帮助决定剂量。希望选择一种设计的试验人员需要了解竞争方法的操作特性。这通常是通过大规模的模拟研究来评估的,研究了多种设计和配置,这可能很耗时,因此限制了模拟的范围。我们介绍了一种新的方法来设计剂量寻找试验的模拟研究。该方法模拟了试验中每个剂量水平下个体可能经历的所有潜在结果。数据集是预先模拟的,然后应用于每种竞争方法,以实现更有效的正面比较。此外,可以询问个别试验数据集,以了解设计在决策过程中何时偏离。在三个案例研究中,我们展示了在比较两个竞争设计之间的性能度量时蒙特卡罗误差的相当大的减少。效率的提高取决于设计的相似性。比较两种I/II期设计变体,推荐相同的最佳生物剂量高度相关,我们表明,新方法需要的模拟研究比传统方法小约48倍。此外,先进的模拟试验数据集可以重复使用,以评估跨多种配置的设计性能。我们建议研究人员在他们的剂量发现研究中考虑这种更有效的模拟方法,我们已经更新了R包升级以帮助促进实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信