Oil well-produced water pollutant adsorption and photodegradation using an innovative double Z-scheme ternary heterostructure of MIL-101(Cr)/Fe3O4-SiO2/nanorod-graphitic carbon nitride: adsorption isotherm and degradation kinetic study.
{"title":"Oil well-produced water pollutant adsorption and photodegradation using an innovative double Z-scheme ternary heterostructure of MIL-101(Cr)/Fe<sub>3</sub>O<sub>4</sub>-SiO<sub>2</sub>/nanorod-graphitic carbon nitride: adsorption isotherm and degradation kinetic study.","authors":"Parisa Azmoon, Mehrdad Farhadian, Alireza Pendashteh, Shahram Tangestaninejad","doi":"10.1007/s11356-025-35891-w","DOIUrl":null,"url":null,"abstract":"<p><p>An innovative ternary heterostructure, MIL-101(Cr)/Fe<sub>3</sub>O<sub>4</sub>-SiO<sub>2</sub>/nanorod-graphitic carbon nitride (MIL-Cr/F@S/nr-GCN), was synthesized by hydrothermal technique. Comprehensive physiochemical characterizations were conducted to elucidate the structural and optical properties. The synthesized photocatalysts were evaluated for adsorption and photodegradation of oil well-produced water pollutants. Remarkably, the ternary heterostructure composite with 20 wt% of nr-GCN exhibited superior photocatalytic performance compared to nr-GCN and the MIL-Cr/F@S binary composite. Under visible-light illumination, the maximum removal efficiency of chemical oxygen demand for synthetic oil well-produced water reached 97.4% under optimized conditions (pH 4, illumination time 90 min, photocatalyst dosage 0.6 g/L, and pollutant initial concentration 754 mg/L). Adsorption studies revealed adherence to the pseudo-second-order kinetic and Freundlich isotherm models The ternary composite displayed degradation rates 2.8 and 2 times higher than nr-GCN and MIL-Cr/F@S, respectively. This enhanced activity was attributed to the double Z-scheme configuration, providing high specific surface area (653 m<sup>2</sup>/g), appropriate bandgap energy (1.6 eV), and efficient charge carrier separation. Moreover, the ternary photocatalysts demonstrated excellent reusability over five cycles without Cr ions leaching into the water. These findings underscore the potential of the novel ternary heterostructure as a green and robust photocatalyst for oil well-produced water treatment.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-35891-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
An innovative ternary heterostructure, MIL-101(Cr)/Fe3O4-SiO2/nanorod-graphitic carbon nitride (MIL-Cr/F@S/nr-GCN), was synthesized by hydrothermal technique. Comprehensive physiochemical characterizations were conducted to elucidate the structural and optical properties. The synthesized photocatalysts were evaluated for adsorption and photodegradation of oil well-produced water pollutants. Remarkably, the ternary heterostructure composite with 20 wt% of nr-GCN exhibited superior photocatalytic performance compared to nr-GCN and the MIL-Cr/F@S binary composite. Under visible-light illumination, the maximum removal efficiency of chemical oxygen demand for synthetic oil well-produced water reached 97.4% under optimized conditions (pH 4, illumination time 90 min, photocatalyst dosage 0.6 g/L, and pollutant initial concentration 754 mg/L). Adsorption studies revealed adherence to the pseudo-second-order kinetic and Freundlich isotherm models The ternary composite displayed degradation rates 2.8 and 2 times higher than nr-GCN and MIL-Cr/F@S, respectively. This enhanced activity was attributed to the double Z-scheme configuration, providing high specific surface area (653 m2/g), appropriate bandgap energy (1.6 eV), and efficient charge carrier separation. Moreover, the ternary photocatalysts demonstrated excellent reusability over five cycles without Cr ions leaching into the water. These findings underscore the potential of the novel ternary heterostructure as a green and robust photocatalyst for oil well-produced water treatment.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.