Marissa N Trujillo, Erin Q Jennings, Dominique O Farrera, Naoya Kitamura, Colin C Anderson, Sarah Gehrke, Julie A Reisz, Mogens Johannsen, James R Roede, Angelo D'Alessandro, James J Galligan
{"title":"Glyoxalase 2 Coordinates de Novo Serine Metabolism.","authors":"Marissa N Trujillo, Erin Q Jennings, Dominique O Farrera, Naoya Kitamura, Colin C Anderson, Sarah Gehrke, Julie A Reisz, Mogens Johannsen, James R Roede, Angelo D'Alessandro, James J Galligan","doi":"10.1002/cbic.202401086","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphoglycerate dehydrogenase (PHGDH) is the first enzyme in de novo Ser biosynthesis. Numerous metabolic pathways rely on Ser as a precursor, most notably one-carbon metabolism, glutathione biosynthesis, and de novo nucleotide biosynthesis. To facilitate proliferation, many cancer cells shunt glycolytic flux through this pathway, placing PHGDH as a metabolic liability and feasible therapeutic target for the treatment of cancer. Herein, we demonstrate the post-translational modification (PTM) of PHGDH by lactoylLys. These PTMs are generated through a non-enzymatic acyl transfer from the glyoxalase cycle intermediate, lactoylglutathione (LGSH). Knockout of the primary LGSH regulatory enzyme, glyoxalase 2 (GLO2), results in increased LGSH and resulting lactoylLys modification of PHGDH. These PTMs reduce enzymatic activity, resulting in a marked reduction in intracellular Ser. Using stable isotope tracing, we demonstrate reduced flux through the de novo Ser biosynthetic pathway. Collectively, these data identify PHGDH as a target for modification by lactoylLys, resulting in reduced enzymatic activity and reduced intracellular Ser.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202401086"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202401086","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphoglycerate dehydrogenase (PHGDH) is the first enzyme in de novo Ser biosynthesis. Numerous metabolic pathways rely on Ser as a precursor, most notably one-carbon metabolism, glutathione biosynthesis, and de novo nucleotide biosynthesis. To facilitate proliferation, many cancer cells shunt glycolytic flux through this pathway, placing PHGDH as a metabolic liability and feasible therapeutic target for the treatment of cancer. Herein, we demonstrate the post-translational modification (PTM) of PHGDH by lactoylLys. These PTMs are generated through a non-enzymatic acyl transfer from the glyoxalase cycle intermediate, lactoylglutathione (LGSH). Knockout of the primary LGSH regulatory enzyme, glyoxalase 2 (GLO2), results in increased LGSH and resulting lactoylLys modification of PHGDH. These PTMs reduce enzymatic activity, resulting in a marked reduction in intracellular Ser. Using stable isotope tracing, we demonstrate reduced flux through the de novo Ser biosynthetic pathway. Collectively, these data identify PHGDH as a target for modification by lactoylLys, resulting in reduced enzymatic activity and reduced intracellular Ser.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).