Consistency Regularization Semisupervised Learning for PolSAR Image Classification

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yu Wang, Shan Jiang, Weijie Li
{"title":"Consistency Regularization Semisupervised Learning for PolSAR Image Classification","authors":"Yu Wang,&nbsp;Shan Jiang,&nbsp;Weijie Li","doi":"10.1155/int/7261699","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Polarimetric Synthetic Aperture Radar (PolSAR) images have emerged as an important data source for land cover classification research due to their all-weather, all-day monitoring capabilities. Deep learning-based classification methods have recently gained significant attention in PolSAR image classification since they have demonstrated excellent performance in the computer vision field. However, the main issue with deep learning-based methods is that they require large amounts of training data. Additionally, the scarcity of labeled data is a significant challenge in the PolSAR image field. Therefore, in this article, we proposed an advanced semisupervised deep self-training algorithm for PolSAR image classification, which utilized both labeled and unlabeled data in a semisupervised way. Then, a training optimization method and a high-confidence sample selection strategy are proposed by integrating consistency regularization. In addition, to achieve stronger feature extraction capabilities, we designed a deep learning-based classifier that combines residual blocks with an efficient multiscale attention module. We have conducted experiments on three popular real PolSAR datasets: 1989 Flevoland, 1991 Flevoland, and Oberpfaffenhofen. The classification results on these datasets demonstrated that the proposed method outperforms several other comparison algorithms, with overall accuracy up to 99.3%, 99.15%, and 94.12%, respectively. These results demonstrated the effectiveness of the proposed method for PolSAR image classification.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/7261699","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/7261699","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polarimetric Synthetic Aperture Radar (PolSAR) images have emerged as an important data source for land cover classification research due to their all-weather, all-day monitoring capabilities. Deep learning-based classification methods have recently gained significant attention in PolSAR image classification since they have demonstrated excellent performance in the computer vision field. However, the main issue with deep learning-based methods is that they require large amounts of training data. Additionally, the scarcity of labeled data is a significant challenge in the PolSAR image field. Therefore, in this article, we proposed an advanced semisupervised deep self-training algorithm for PolSAR image classification, which utilized both labeled and unlabeled data in a semisupervised way. Then, a training optimization method and a high-confidence sample selection strategy are proposed by integrating consistency regularization. In addition, to achieve stronger feature extraction capabilities, we designed a deep learning-based classifier that combines residual blocks with an efficient multiscale attention module. We have conducted experiments on three popular real PolSAR datasets: 1989 Flevoland, 1991 Flevoland, and Oberpfaffenhofen. The classification results on these datasets demonstrated that the proposed method outperforms several other comparison algorithms, with overall accuracy up to 99.3%, 99.15%, and 94.12%, respectively. These results demonstrated the effectiveness of the proposed method for PolSAR image classification.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信