Casey Youngflesh, Kelly Kapsar, Adriana Uscanga, Peter J. Williams, Jeffrey W. Doser, Lala Kounta, Phoebe L. Zarnetske
{"title":"Environmental Variability Shapes Life History of the World's Birds","authors":"Casey Youngflesh, Kelly Kapsar, Adriana Uscanga, Peter J. Williams, Jeffrey W. Doser, Lala Kounta, Phoebe L. Zarnetske","doi":"10.1111/ele.70077","DOIUrl":null,"url":null,"abstract":"<p>Theory suggests life history plays a key role in the ability of organisms to persist under fluctuating environmental conditions. However, the notion that environmental variability has shaped the distribution of life history traits across large spatial and taxonomic scales has gone largely untested using empirical data. Synthesising a collection of data resources on global climate, species traits, and species ranges, we quantified the role that environmental variability over time has played in shaping pace of life across the world's non-migratory, non-marine bird species (<i>N</i> = 7477). In support of existing theory, we found that species that experience high inter-annual temperature variability tended to have a slower pace of life, while the opposite was true for high intra-annual temperature variability. The effect of precipitation variability was less pronounced and more uncertain. These observed patterns were apparent despite the vastly different ecologies of our study species and evidence of strong phylogenetic constraint. Additionally, we highlight the importance of contextualising rates of environmental change in terms of the historical variability of environmental systems and species' pace of life. Species experiencing higher rates of relative environmental change, in terms of standard deviations per generation, may be most susceptible to climate change.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 2","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70077","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70077","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Theory suggests life history plays a key role in the ability of organisms to persist under fluctuating environmental conditions. However, the notion that environmental variability has shaped the distribution of life history traits across large spatial and taxonomic scales has gone largely untested using empirical data. Synthesising a collection of data resources on global climate, species traits, and species ranges, we quantified the role that environmental variability over time has played in shaping pace of life across the world's non-migratory, non-marine bird species (N = 7477). In support of existing theory, we found that species that experience high inter-annual temperature variability tended to have a slower pace of life, while the opposite was true for high intra-annual temperature variability. The effect of precipitation variability was less pronounced and more uncertain. These observed patterns were apparent despite the vastly different ecologies of our study species and evidence of strong phylogenetic constraint. Additionally, we highlight the importance of contextualising rates of environmental change in terms of the historical variability of environmental systems and species' pace of life. Species experiencing higher rates of relative environmental change, in terms of standard deviations per generation, may be most susceptible to climate change.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.