1,4-Xylenyl-Spaced Bis-Thiazole for Electrochemical Modulating Cobalt Ions Potentiometric Sensor Relies on Anova in Fresh and Canned Samples: Optimization and Sensitivity

IF 2.3 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Electroanalysis Pub Date : 2025-02-25 DOI:10.1002/elan.12031
Maysa R. Mostafa, Refaie M. Kassab, Sami A. Al-Hussain, Magdi E. A. Zaki, Zeinab A. Muhammad, Gehad G. Mohamed
{"title":"1,4-Xylenyl-Spaced Bis-Thiazole for Electrochemical Modulating Cobalt Ions Potentiometric Sensor Relies on Anova in Fresh and Canned Samples: Optimization and Sensitivity","authors":"Maysa R. Mostafa,&nbsp;Refaie M. Kassab,&nbsp;Sami A. Al-Hussain,&nbsp;Magdi E. A. Zaki,&nbsp;Zeinab A. Muhammad,&nbsp;Gehad G. Mohamed","doi":"10.1002/elan.12031","DOIUrl":null,"url":null,"abstract":"<p>This article uses bis-dihydrazothiazolone derivative called 1,4-xylenyl-spaced bis-thiazole as an ionophore for assessment of trace cobalt(II) ions using an electrochemical potentiometric carbon sensor with tricresyl phosphate as a binder and graphite as base material.The microstructure and morphology were assessed using a scanning electron microscope and energy-dispersive X-ray spectroscopy. In addition, the elemental analyses as well as infrared, mass, and <sup>1</sup>H- and <sup>13</sup>C-nuclear magnetic resonance were used to determine ionophore structure. The influence of variables such as pH, lifetime, content percentage, and others were modified. Under ideal conditions, it performed an efficient response within 6 s and pH 2.0–7.5 throughout a range from 5.0 × 10<sup>−3</sup> to 1.0 × 10<sup>−8</sup> M for 69 days with 1.0 × 10<sup>−8</sup> M of the detection limit. Also, cobalt(II) ion was determined in many different samples such as water, fresh and canned fish, rice, mushroom, sesame, and <i>Nigella sativa</i> seed. Atomic absorption spectroscopy was used for the determination of cobalt(II) ions in these samples and provided evidence for the feasibility of the proposed approach as a cobalt(II) ion detection method. The recovery percentages for potentiometric sensor ranged from 98.18% to 99.75% with low relative standard deviation values &lt;5. Statistical validation analysis was reported by analysis of variance (ANOVA) and design expert programs, ANOVA single value, and <i>F-</i> and <i>t</i>-tests at 95% confidence limits.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"37 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroanalysis","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elan.12031","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This article uses bis-dihydrazothiazolone derivative called 1,4-xylenyl-spaced bis-thiazole as an ionophore for assessment of trace cobalt(II) ions using an electrochemical potentiometric carbon sensor with tricresyl phosphate as a binder and graphite as base material.The microstructure and morphology were assessed using a scanning electron microscope and energy-dispersive X-ray spectroscopy. In addition, the elemental analyses as well as infrared, mass, and 1H- and 13C-nuclear magnetic resonance were used to determine ionophore structure. The influence of variables such as pH, lifetime, content percentage, and others were modified. Under ideal conditions, it performed an efficient response within 6 s and pH 2.0–7.5 throughout a range from 5.0 × 10−3 to 1.0 × 10−8 M for 69 days with 1.0 × 10−8 M of the detection limit. Also, cobalt(II) ion was determined in many different samples such as water, fresh and canned fish, rice, mushroom, sesame, and Nigella sativa seed. Atomic absorption spectroscopy was used for the determination of cobalt(II) ions in these samples and provided evidence for the feasibility of the proposed approach as a cobalt(II) ion detection method. The recovery percentages for potentiometric sensor ranged from 98.18% to 99.75% with low relative standard deviation values <5. Statistical validation analysis was reported by analysis of variance (ANOVA) and design expert programs, ANOVA single value, and F- and t-tests at 95% confidence limits.

Abstract Image

1,4-二甲苯间距双噻唑电化学调制钴离子电位传感器:基于新鲜和罐装样品的方差分析:优化和灵敏度
本文采用以磷酸三烷基为粘合剂,石墨为基料的电化学电位碳传感器,采用双二腙噻唑衍生物1,4-二甲苯间距双噻唑作为离子载体,对痕量钴(II)离子进行评价。利用扫描电子显微镜和能量色散x射线能谱对其微观结构和形貌进行了表征。此外,元素分析、红外、质量、1H-核磁共振和13c核磁共振测定了离子团的结构。修改了pH、寿命、含量百分比等变量的影响。在理想条件下,在5.0 × 10−3 ~ 1.0 × 10−8 M范围内,在pH 2.0 ~ 7.5范围内,在1.0 × 10−8 M的检出限下,在6 s内进行有效响应,持续69天。此外,还在许多不同的样品中测定了钴(II)离子,如水、新鲜和罐装鱼、大米、蘑菇、芝麻和黑芝麻种子。采用原子吸收光谱法测定样品中的钴(II)离子,为该方法作为钴(II)离子检测方法的可行性提供了证据。电位传感器的回收率为98.18% ~ 99.75%,相对标准偏差值较低。统计验证分析采用方差分析(ANOVA)和设计专家程序、单值方差分析(ANOVA)以及95%置信限的F检验和t检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electroanalysis
Electroanalysis 化学-电化学
CiteScore
6.00
自引率
3.30%
发文量
222
审稿时长
2.4 months
期刊介绍: Electroanalysis is an international, peer-reviewed journal covering all branches of electroanalytical chemistry, including both fundamental and application papers as well as reviews dealing with new electrochemical sensors and biosensors, nanobioelectronics devices, analytical voltammetry, potentiometry, new electrochemical detection schemes based on novel nanomaterials, fuel cells and biofuel cells, and important practical applications. Serving as a vital communication link between the research labs and the field, Electroanalysis helps you to quickly adapt the latest innovations into practical clinical, environmental, food analysis, industrial and energy-related applications. Electroanalysis provides the most comprehensive coverage of the field and is the number one source for information on electroanalytical chemistry, electrochemical sensors and biosensors and fuel/biofuel cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信