{"title":"Frequency Dynamical Behaviour and Frequency Equilibrium Point of Multi-VSC Systems","authors":"Xing Yao, Ziqian Yang, Meng Zhan, Wangqianyun Tang","doi":"10.1049/gtd2.70028","DOIUrl":null,"url":null,"abstract":"<p>With replacement of synchronous generator (SG) by voltage source converter (VSC) interfaced renewables, power system dynamics is undergoing significant changes. This paper investigates the frequency dynamical behaviour of new-generation power systems composed solely of grid-following (GFL) and/or grid-forming (GFM) VSCs, without an infinitely strong bus or SG. It is found that for a system composed solely of GFL-VSC, as it lacks a frequency equilibrium point after a certain disturbance, the whole system exhibits an unusual phenomenon of frequency drifting. On the other hand, for a hybrid system composed of both GFM-VSC and GFL-VSC, as it has a frequency equilibrium point, the system can settle down to a new frequency steady-state, and the GFM-VSC and GFL-VSC show completely different behaviours in the transient process. The GFM-VSC plays a key role in the frequency dynamics, similar to the SG. Based on the inertia-centre frequency dynamics, it is observed that the GFM-VSC determines the equivalent damping of the system, and both GFM-VSC and GFL-VSC contribute to the equivalent inertia. All these findings are well supported and verified by our theoretical analysis and time-domain simulations, and they can provide physical insights in the bulk frequency dynamical behaviour of new-generation power systems dominated by converters.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70028","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70028","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With replacement of synchronous generator (SG) by voltage source converter (VSC) interfaced renewables, power system dynamics is undergoing significant changes. This paper investigates the frequency dynamical behaviour of new-generation power systems composed solely of grid-following (GFL) and/or grid-forming (GFM) VSCs, without an infinitely strong bus or SG. It is found that for a system composed solely of GFL-VSC, as it lacks a frequency equilibrium point after a certain disturbance, the whole system exhibits an unusual phenomenon of frequency drifting. On the other hand, for a hybrid system composed of both GFM-VSC and GFL-VSC, as it has a frequency equilibrium point, the system can settle down to a new frequency steady-state, and the GFM-VSC and GFL-VSC show completely different behaviours in the transient process. The GFM-VSC plays a key role in the frequency dynamics, similar to the SG. Based on the inertia-centre frequency dynamics, it is observed that the GFM-VSC determines the equivalent damping of the system, and both GFM-VSC and GFL-VSC contribute to the equivalent inertia. All these findings are well supported and verified by our theoretical analysis and time-domain simulations, and they can provide physical insights in the bulk frequency dynamical behaviour of new-generation power systems dominated by converters.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf