Exploring the Impact of LRRK2 WD40 G2294R Mutation on Conformation and Dimerisation Dynamics: Insights From Molecular Dynamics Simulation

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chuancheng Wei, Choon Han Heh, Sek Peng Chin
{"title":"Exploring the Impact of LRRK2 WD40 G2294R Mutation on Conformation and Dimerisation Dynamics: Insights From Molecular Dynamics Simulation","authors":"Chuancheng Wei,&nbsp;Choon Han Heh,&nbsp;Sek Peng Chin","doi":"10.1002/jcb.70011","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>LRRK2 has gained prominence in treating Parkinson's disease as a potential drug target. Mutations in the WD40 domain, like G2294R, are notable for their influence on the stability and dimerisation of the LRRK2. Studies have shown that G2294R could result in the WD40 distortion and destabilised LRRK2 protein. However, the underlying mechanism remains unclear. To elucidate how the G2294R mutation in the WD40 domain affects the structural and functional conformation of LRRK2, the structure of WD40 G2294R was constructed using homology modelling, and the molecular dynamics simulations on G2294R and wild-type dimers and monomers were carried out. The results show that distortion mainly occurs in the areas of β3, L1, β5, L2, and β7. The dimerisation was enhanced through the conformational changes in the G2294R variant, while the domains show different contributions towards the dimerisation. Our study reveals the effects of G2294R on the WD40. It explores its role in dimerisation and distortion, which could contribute to developing novel WD40 inhibitors and elucidate the molecular mechanism of WD40 dimerisation-monomerisation equilibrium.</p>\n </div>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"126 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular biochemistry","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcb.70011","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

LRRK2 has gained prominence in treating Parkinson's disease as a potential drug target. Mutations in the WD40 domain, like G2294R, are notable for their influence on the stability and dimerisation of the LRRK2. Studies have shown that G2294R could result in the WD40 distortion and destabilised LRRK2 protein. However, the underlying mechanism remains unclear. To elucidate how the G2294R mutation in the WD40 domain affects the structural and functional conformation of LRRK2, the structure of WD40 G2294R was constructed using homology modelling, and the molecular dynamics simulations on G2294R and wild-type dimers and monomers were carried out. The results show that distortion mainly occurs in the areas of β3, L1, β5, L2, and β7. The dimerisation was enhanced through the conformational changes in the G2294R variant, while the domains show different contributions towards the dimerisation. Our study reveals the effects of G2294R on the WD40. It explores its role in dimerisation and distortion, which could contribute to developing novel WD40 inhibitors and elucidate the molecular mechanism of WD40 dimerisation-monomerisation equilibrium.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of cellular biochemistry
Journal of cellular biochemistry 生物-生化与分子生物学
CiteScore
9.90
自引率
0.00%
发文量
164
审稿时长
1 months
期刊介绍: The Journal of Cellular Biochemistry publishes descriptions of original research in which complex cellular, pathogenic, clinical, or animal model systems are studied by biochemical, molecular, genetic, epigenetic or quantitative ultrastructural approaches. Submission of papers reporting genomic, proteomic, bioinformatics and systems biology approaches to identify and characterize parameters of biological control in a cellular context are encouraged. The areas covered include, but are not restricted to, conditions, agents, regulatory networks, or differentiation states that influence structure, cell cycle & growth control, structure-function relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信