Multi-Layered Evaporite Flow Induced by Thick-Skinned Deformation

IF 2.8 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Basin Research Pub Date : 2025-02-25 DOI:10.1111/bre.70022
Daniel Phillips, Jimmy Moneron, Dan Roberts, Joe Cartwright
{"title":"Multi-Layered Evaporite Flow Induced by Thick-Skinned Deformation","authors":"Daniel Phillips,&nbsp;Jimmy Moneron,&nbsp;Dan Roberts,&nbsp;Joe Cartwright","doi":"10.1111/bre.70022","DOIUrl":null,"url":null,"abstract":"<p>Three-dimensional seismic imaging combined with offshore well data analyses is used to interpret inverted faults underlying a thick Layered Evaporite Sequence in the Southern North Sea. By observing changes in evaporite volume above and away from an inversion structure, we infer that reactivation of thick-skinned normal faults induced multi-layered, trans-structural flow in the overlying evaporites. This flow acted to decouple deformation and prevent stress transmission from below to above the salt. The induced salt flow is layer-dependent, occurring mainly within the halite lithologies of the Layered Evaporite Sequence between a folded anhydrite stringer. This stringer folding predates inversion, which later induced stringer fold amplification and deflection nearer to the top of the evaporite sequence. These findings provide insights into the complexities of stratified evaporite rheologies and the timing of basin deformation, with wider implications for contractional salt tectonics wherever thick- and thin-skinned deformation may be coeval.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"37 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.70022","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basin Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bre.70022","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional seismic imaging combined with offshore well data analyses is used to interpret inverted faults underlying a thick Layered Evaporite Sequence in the Southern North Sea. By observing changes in evaporite volume above and away from an inversion structure, we infer that reactivation of thick-skinned normal faults induced multi-layered, trans-structural flow in the overlying evaporites. This flow acted to decouple deformation and prevent stress transmission from below to above the salt. The induced salt flow is layer-dependent, occurring mainly within the halite lithologies of the Layered Evaporite Sequence between a folded anhydrite stringer. This stringer folding predates inversion, which later induced stringer fold amplification and deflection nearer to the top of the evaporite sequence. These findings provide insights into the complexities of stratified evaporite rheologies and the timing of basin deformation, with wider implications for contractional salt tectonics wherever thick- and thin-skinned deformation may be coeval.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Basin Research
Basin Research 地学-地球科学综合
CiteScore
7.00
自引率
9.40%
发文量
88
审稿时长
>12 weeks
期刊介绍: Basin Research is an international journal which aims to publish original, high impact research papers on sedimentary basin systems. We view integrated, interdisciplinary research as being essential for the advancement of the subject area; therefore, we do not seek manuscripts focused purely on sedimentology, structural geology, or geophysics that have a natural home in specialist journals. Rather, we seek manuscripts that treat sedimentary basins as multi-component systems that require a multi-faceted approach to advance our understanding of their development. During deposition and subsidence we are concerned with large-scale geodynamic processes, heat flow, fluid flow, strain distribution, seismic and sequence stratigraphy, modelling, burial and inversion histories. In addition, we view the development of the source area, in terms of drainage networks, climate, erosion, denudation and sediment routing systems as vital to sedimentary basin systems. The underpinning requirement is that a contribution should be of interest to earth scientists of more than one discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信