Reconstruction of Global Ocean Surface pCO2 and Air-Sea CO2 Flux: Based on Multigrained Cascade Forest Model

IF 3.4 2区 地球科学 Q1 OCEANOGRAPHY
Wanqin Zhong, Xin Ma, Tianqi Shi, Ge Han, Haowei Zhang, Wei Gong
{"title":"Reconstruction of Global Ocean Surface pCO2 and Air-Sea CO2 Flux: Based on Multigrained Cascade Forest Model","authors":"Wanqin Zhong,&nbsp;Xin Ma,&nbsp;Tianqi Shi,&nbsp;Ge Han,&nbsp;Haowei Zhang,&nbsp;Wei Gong","doi":"10.1029/2024JC021483","DOIUrl":null,"url":null,"abstract":"<p>Quantifying the role of air-sea CO<sub>2</sub> exchange is essential for accurately estimating the global carbon balance, which is dependent on the spatial and temporal resolution of ocean surface carbon dioxide partial pressure (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>p</mi>\n <mtext>CO</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mrow>\n <mo>(</mo>\n <mtext>sw</mtext>\n <mo>)</mo>\n </mrow>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${p\\text{CO}}_{2(\\text{sw})}$</annotation>\n </semantics></math>). When dealing with the global ocean as a vast and complex system, most existing studies tend to partition the global ocean into small-scale regions. To account for interactions of environmental variables across multiple regions, we used machine learning algorithms to holistically reconstruct a 20-year global <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>p</mi>\n <mtext>CO</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mrow>\n <mo>(</mo>\n <mtext>sw</mtext>\n <mo>)</mo>\n </mrow>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${p\\text{CO}}_{2(\\text{sw})}$</annotation>\n </semantics></math> map at a high resolution of 4 × 4 km based on products from the Moderate Resolution Imaging Spectroradiometer, reanalysis data, and Surface Ocean CO<sub>2</sub> Atlas. Three machine learning methods were compared, with multigrained cascade forest (gcForest) demonstrating the highest accuracy in global reconstruction (r<sup>2</sup> of 0.92, root mean square error of 13.46, and mean absolute error of 7.34 μatm). The global <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>p</mi>\n <mtext>CO</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mrow>\n <mo>(</mo>\n <mtext>sw</mtext>\n <mo>)</mo>\n </mrow>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${p\\text{CO}}_{2(\\text{sw})}$</annotation>\n </semantics></math> has shown a steady increase at an average annual growth rate of 1.95 ± 0.05 μatm yr<sup>−1</sup>, controlled mainly by sea surface temperature and chlorophyll concentration. This study covers an ocean area of approximately 335 × <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>10</mn>\n <mn>6</mn>\n </msup>\n </mrow>\n <annotation> ${10}^{6}$</annotation>\n </semantics></math> km<sup>2</sup>, encompassing over 95% of the annual average carbon sink area. During 20 years, the daily CO<sub>2</sub> flux decreased by 0.44 mmol m<sup>−2</sup> d<sup>−1</sup>, while the proportion of carbon sink area remained constant, indicating ocean's carbon uptake capacity per unit area has been increasing.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021483","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantifying the role of air-sea CO2 exchange is essential for accurately estimating the global carbon balance, which is dependent on the spatial and temporal resolution of ocean surface carbon dioxide partial pressure ( p CO 2 ( sw ) ${p\text{CO}}_{2(\text{sw})}$ ). When dealing with the global ocean as a vast and complex system, most existing studies tend to partition the global ocean into small-scale regions. To account for interactions of environmental variables across multiple regions, we used machine learning algorithms to holistically reconstruct a 20-year global p CO 2 ( sw ) ${p\text{CO}}_{2(\text{sw})}$ map at a high resolution of 4 × 4 km based on products from the Moderate Resolution Imaging Spectroradiometer, reanalysis data, and Surface Ocean CO2 Atlas. Three machine learning methods were compared, with multigrained cascade forest (gcForest) demonstrating the highest accuracy in global reconstruction (r2 of 0.92, root mean square error of 13.46, and mean absolute error of 7.34 μatm). The global p CO 2 ( sw ) ${p\text{CO}}_{2(\text{sw})}$ has shown a steady increase at an average annual growth rate of 1.95 ± 0.05 μatm yr−1, controlled mainly by sea surface temperature and chlorophyll concentration. This study covers an ocean area of approximately 335 ×  10 6 ${10}^{6}$ km2, encompassing over 95% of the annual average carbon sink area. During 20 years, the daily CO2 flux decreased by 0.44 mmol m−2 d−1, while the proportion of carbon sink area remained constant, indicating ocean's carbon uptake capacity per unit area has been increasing.

全球海洋表面pCO2和海气CO2通量的重建:基于多粒度级联林模型
量化海气二氧化碳交换的作用对于准确估计全球碳平衡至关重要,这取决于海洋表面二氧化碳分压(p CO 2 (sw))的时空分辨率。$ {p \文本{有限公司}}_ {2 (\ {sw文本 })}$ ).当将全球海洋作为一个庞大而复杂的系统来处理时,现有的大多数研究都倾向于将全球海洋划分为小范围的区域。为了解释多个地区环境变量的相互作用,我们使用机器学习算法整体重建20年的全球p co2 (sw) ${p\text{CO}}_{2(\text{sw})}$基于中分辨率成像光谱仪、再分析数据和表层海洋CO2地图集的产品,绘制了一张4 × 4 km的高分辨率地图。通过对三种机器学习方法的比较,发现多粒度级联森林(gcForest)的全局重建精度最高(r2为0.92,均方根误差为13.46,平均绝对误差为7.34 μatm)。全球二氧化碳(sw) ${p\text{CO}}_{2(\text{sw})}$以年均增长率稳步增长1.95±0.05 μatm yr - 1,主要受海面温度和叶绿素浓度控制。本研究覆盖的海洋面积约为335 × 106 ${10}^{6}$ km2,占年平均碳汇面积的95%以上。20 a来,日CO2通量减少了0.44 mmol m−2 d−1,而碳汇面积所占比例保持不变,表明海洋单位面积碳吸收能力一直在增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信