Lingfeng Zheng, Yongzhi Zhou, Hongda Cai, Xiaoming Liu, Donglei Sun
{"title":"Model Predictive Excitation Controller for Synchronous Condenser Coordinated With Wind Farms in Sending-End System","authors":"Lingfeng Zheng, Yongzhi Zhou, Hongda Cai, Xiaoming Liu, Donglei Sun","doi":"10.1155/etep/8790672","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The rapid development of renewable energy sources has led to critical voltage problems in sending-end systems, necessitating reactive power auxiliary devices and corresponding control strategies. This paper proposes a novel model predictive excitation controller for synchronous condenser, coordinated with the wind farms (WFs) without communication, to provide reactive power and mitigate voltage fluctuations. The proposed controller predicts the future behavior of the system and determines the optimal control input using model predictive control (MPC) algorithm with extended and linearized state space model of sending-end system. An extended state observer (ESO) is designed to estimate the reactive power output of the WFs for noncommunication coordination and to account for unmeasurable disturbances, providing the estimated states to the model predictive excitation controller. The effectiveness of suppressing voltage fluctuations and providing sufficient reactive power support is verified through time-domain simulations in MATLAB/Simulink, compared with the traditional excitation controller.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2025 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/etep/8790672","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/etep/8790672","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of renewable energy sources has led to critical voltage problems in sending-end systems, necessitating reactive power auxiliary devices and corresponding control strategies. This paper proposes a novel model predictive excitation controller for synchronous condenser, coordinated with the wind farms (WFs) without communication, to provide reactive power and mitigate voltage fluctuations. The proposed controller predicts the future behavior of the system and determines the optimal control input using model predictive control (MPC) algorithm with extended and linearized state space model of sending-end system. An extended state observer (ESO) is designed to estimate the reactive power output of the WFs for noncommunication coordination and to account for unmeasurable disturbances, providing the estimated states to the model predictive excitation controller. The effectiveness of suppressing voltage fluctuations and providing sufficient reactive power support is verified through time-domain simulations in MATLAB/Simulink, compared with the traditional excitation controller.
期刊介绍:
International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems.
Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.