Julia Schroeder, Alexander König, Christopher Poeplau, Tobias Bölscher, Katharina H. E. Meurer, Monika Toleikienė, Marjoleine Hanegraaf, Annelein Meisner, Josef Hakl, Katharina M. Keiblinger, Abad Chabbi, Marjetka Suhadolc, Anton Govednik, Erich Inselsbacher, Heike Knicker, Laura Gismero Rodríguez, Anke M. Herrmann
{"title":"The Effect of Crop Diversification and Season on Microbial Carbon Use Efficiency Across a European Pedoclimatic Gradient","authors":"Julia Schroeder, Alexander König, Christopher Poeplau, Tobias Bölscher, Katharina H. E. Meurer, Monika Toleikienė, Marjoleine Hanegraaf, Annelein Meisner, Josef Hakl, Katharina M. Keiblinger, Abad Chabbi, Marjetka Suhadolc, Anton Govednik, Erich Inselsbacher, Heike Knicker, Laura Gismero Rodríguez, Anke M. Herrmann","doi":"10.1111/ejss.70078","DOIUrl":null,"url":null,"abstract":"<p>Microbial transformation of soil organic matter plays a critical role in carbon (C) cycling making it essential to understand how land use and management practices influence microbial physiology and its connection to C dynamics. One factor that is likely to impact soil microbial physiology is crop diversification via its influence on belowground diversity (e.g., chemical heterogeneity of C inputs, microbial community composition). However, the effect of crop diversification measures on microbial physiology and potential effects on C cycling in agricultural soils is still unclear. To address this knowledge gap, we sampled topsoil from eight experimental sites covering different crop diversification measures across Europe (i.e., cover crops, ley farming, vegetation stripes). We used the <sup>18</sup>O-labelling method to analyse microbial C use efficiency (CUE), growth, respiration and biomass C. Additionally, a second sampling at five selected sites examined whether the growing season influenced the impact of crop diversification. Meta-analysis revealed no overall effect of crop diversification on CUE, microbial activity, biomass or soil organic C (SOC). However, the effects varied with the type of diversification measure: cover crops did not affect carbon processing, vegetation stripes increased microbial activity, and ley farming enhanced CUE. The largest variation in CUE was observed between samplings at the same sites, indicating seasonal dynamics. Temperature, precipitation and photosynthetically active radiation predicted seasonal variation in CUE (<i>R</i><sup>2</sup> = 0.36). While cover crops did not significantly impact C storage in our study, both ley farming and vegetation stripes increased SOC. The overall effect of crop diversification on SOC seems to be decoupled from highly temporally variable CUE in the bulk soil and rather relate to C-inputs.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"76 2","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70078","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70078","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial transformation of soil organic matter plays a critical role in carbon (C) cycling making it essential to understand how land use and management practices influence microbial physiology and its connection to C dynamics. One factor that is likely to impact soil microbial physiology is crop diversification via its influence on belowground diversity (e.g., chemical heterogeneity of C inputs, microbial community composition). However, the effect of crop diversification measures on microbial physiology and potential effects on C cycling in agricultural soils is still unclear. To address this knowledge gap, we sampled topsoil from eight experimental sites covering different crop diversification measures across Europe (i.e., cover crops, ley farming, vegetation stripes). We used the 18O-labelling method to analyse microbial C use efficiency (CUE), growth, respiration and biomass C. Additionally, a second sampling at five selected sites examined whether the growing season influenced the impact of crop diversification. Meta-analysis revealed no overall effect of crop diversification on CUE, microbial activity, biomass or soil organic C (SOC). However, the effects varied with the type of diversification measure: cover crops did not affect carbon processing, vegetation stripes increased microbial activity, and ley farming enhanced CUE. The largest variation in CUE was observed between samplings at the same sites, indicating seasonal dynamics. Temperature, precipitation and photosynthetically active radiation predicted seasonal variation in CUE (R2 = 0.36). While cover crops did not significantly impact C storage in our study, both ley farming and vegetation stripes increased SOC. The overall effect of crop diversification on SOC seems to be decoupled from highly temporally variable CUE in the bulk soil and rather relate to C-inputs.
期刊介绍:
The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.