Conformational changes of two oppositely charged polyelectrolytes, including those combined into a single block copolymer, on the surface of a charged or transversely polarized cylindrical metal nanowire
Nikita Yurievich Kruchinin, Michael Gennadievich Kucherenko
{"title":"Conformational changes of two oppositely charged polyelectrolytes, including those combined into a single block copolymer, on the surface of a charged or transversely polarized cylindrical metal nanowire","authors":"Nikita Yurievich Kruchinin, Michael Gennadievich Kucherenko","doi":"10.1007/s10965-025-04305-3","DOIUrl":null,"url":null,"abstract":"<div><p>Using molecular dynamics modeling, the change in the conformational structure of the macromolecular corona consisting of two oppositely charged polyelectrolytes, including those combined into one block copolymer, on the neutral and charged surfaces of a cylindrical metal nanowire, as well as on a nanowire polarized in an external transverse uniform electric field is studied. A mathematical model of the conformations of polyelectrolyte chains and block copolymers adsorbed on charged and polarized cylindrical metal nanoparticles is presented. On the uncharged surface of the cylindrical nanowire, macromolecules of oppositely charged polyelectrolytes, including those sequentially connected into one block copolymer, intertwine with each other and form a tightly enveloping corona. On the uniformly charged surface of the nanowire, swelling of the macromolecular corona occurred due to its separation into differently charged coaxial macromolecular layers. When a metal nanowire was placed in an external transversely directed electric field, the macromolecular shell was stratified in the direction of the transverse polarization of the nanowire, and the charged layers of the polymer corona in the polar regions of the nanocylinder swelled.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"32 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-025-04305-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Using molecular dynamics modeling, the change in the conformational structure of the macromolecular corona consisting of two oppositely charged polyelectrolytes, including those combined into one block copolymer, on the neutral and charged surfaces of a cylindrical metal nanowire, as well as on a nanowire polarized in an external transverse uniform electric field is studied. A mathematical model of the conformations of polyelectrolyte chains and block copolymers adsorbed on charged and polarized cylindrical metal nanoparticles is presented. On the uncharged surface of the cylindrical nanowire, macromolecules of oppositely charged polyelectrolytes, including those sequentially connected into one block copolymer, intertwine with each other and form a tightly enveloping corona. On the uniformly charged surface of the nanowire, swelling of the macromolecular corona occurred due to its separation into differently charged coaxial macromolecular layers. When a metal nanowire was placed in an external transversely directed electric field, the macromolecular shell was stratified in the direction of the transverse polarization of the nanowire, and the charged layers of the polymer corona in the polar regions of the nanocylinder swelled.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.