{"title":"Energy-time uncertainty relation from entropy measures","authors":"Nana Cabo Bizet, Octavio Obregón, Wilfredo Yupanqui Carpio","doi":"10.1140/epjp/s13360-025-06126-1","DOIUrl":null,"url":null,"abstract":"<div><p>In a previous study, it was shown that the generalized uncertainty principle can be derived from non-extensive entropies, particularly those depending only on the probability, denoted as <span>\\(S_\\pm\\)</span> in the literature. This finding reveals an intriguing connection between non-extensive statistics and quantum gravity. In the present work, we extend our previous result and derive a generalized energy-time uncertainty relation based on a measure of non-extensive entropies. Consequently, the dispersion relation undergoes modifications consistent with those obtained in other approaches to quantum gravity. We interpret these modifications as evidence of the non-extensive behavior of spacetime fluctuations at scales close to the Planck scale. While these effects are significant in this regime, they become negligible in the classical one, i.e., at low energies where the spacetime is smooth. As a consequence of the non-extensive behavior exhibited by spacetime at very small scales, the black hole radiation temperature undergoes quantum-level corrections, increasing in the case of <span>\\(S_{-}\\)</span> and decreasing for the case of <span>\\(S_{+}\\)</span>. Moreover, the modified uncertainty relation derived here predicts a maximum uncertainty in energy, of the order of Planck energy, and a minimum time interval, of the order of the Planck time, offering new insights into the fundamental structure of spacetime in the quantum regime.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06126-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In a previous study, it was shown that the generalized uncertainty principle can be derived from non-extensive entropies, particularly those depending only on the probability, denoted as \(S_\pm\) in the literature. This finding reveals an intriguing connection between non-extensive statistics and quantum gravity. In the present work, we extend our previous result and derive a generalized energy-time uncertainty relation based on a measure of non-extensive entropies. Consequently, the dispersion relation undergoes modifications consistent with those obtained in other approaches to quantum gravity. We interpret these modifications as evidence of the non-extensive behavior of spacetime fluctuations at scales close to the Planck scale. While these effects are significant in this regime, they become negligible in the classical one, i.e., at low energies where the spacetime is smooth. As a consequence of the non-extensive behavior exhibited by spacetime at very small scales, the black hole radiation temperature undergoes quantum-level corrections, increasing in the case of \(S_{-}\) and decreasing for the case of \(S_{+}\). Moreover, the modified uncertainty relation derived here predicts a maximum uncertainty in energy, of the order of Planck energy, and a minimum time interval, of the order of the Planck time, offering new insights into the fundamental structure of spacetime in the quantum regime.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.