Effect of pH and Ratio of Alumina Sol on Properties of 3D Printed Silica Ceramics

IF 2.8 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Silicon Pub Date : 2024-12-31 DOI:10.1007/s12633-024-03211-5
Yunzhi Huang, He Li, Paolo Colombo
{"title":"Effect of pH and Ratio of Alumina Sol on Properties of 3D Printed Silica Ceramics","authors":"Yunzhi Huang,&nbsp;He Li,&nbsp;Paolo Colombo","doi":"10.1007/s12633-024-03211-5","DOIUrl":null,"url":null,"abstract":"<div><p>3D printed silica ceramics have the advantages of low thermal expansion coefficient, high thermal stability, easy removal, etc., and are widely used in ceramic core manufacturing. However, in the sintering stage, silica often cracks due to shrinkage and phase transformation, which seriously affects the mechanical properties of the material. The impregnation of alumina sol can promote the formation of cristobalite phase in ceramics, and the mechanical properties of ceramics can be improved with appropriate amount of cristobalite. In this study, 3D printed silica ceramics were impregnated with alumina sol, and the effects of pH value and the concentration of alumina in the sol on the properties of the samples were investigated. When pH was 2.5, the mechanical properties of alumina sol impregnated samples reached a flexural strength of 24.98 ± 0.93 MPa, with a bulk density of 1.70 ± 0.01 g/cm<sup>3</sup>, and an open porosity of 25.82 ± 0.33%. When the ratio of alumina sol to silica sol was 3:1, the mechanical properties of alumina sol impregnated ceramics reached the maximum, with a flexural strength of 33.85 ± 1.69 MPa, a bulk density of 1.73 ± 0.01 g/cm<sup>3</sup>, and an open porosity of 24.02 ± 0.72%.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"17 3","pages":"487 - 498"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03211-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

3D printed silica ceramics have the advantages of low thermal expansion coefficient, high thermal stability, easy removal, etc., and are widely used in ceramic core manufacturing. However, in the sintering stage, silica often cracks due to shrinkage and phase transformation, which seriously affects the mechanical properties of the material. The impregnation of alumina sol can promote the formation of cristobalite phase in ceramics, and the mechanical properties of ceramics can be improved with appropriate amount of cristobalite. In this study, 3D printed silica ceramics were impregnated with alumina sol, and the effects of pH value and the concentration of alumina in the sol on the properties of the samples were investigated. When pH was 2.5, the mechanical properties of alumina sol impregnated samples reached a flexural strength of 24.98 ± 0.93 MPa, with a bulk density of 1.70 ± 0.01 g/cm3, and an open porosity of 25.82 ± 0.33%. When the ratio of alumina sol to silica sol was 3:1, the mechanical properties of alumina sol impregnated ceramics reached the maximum, with a flexural strength of 33.85 ± 1.69 MPa, a bulk density of 1.73 ± 0.01 g/cm3, and an open porosity of 24.02 ± 0.72%.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Silicon
Silicon CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.90
自引率
20.60%
发文量
685
审稿时长
>12 weeks
期刊介绍: The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信