Harnessing S-scheme junctions for enhanced CO2 photoreduction: molecular bonding of copper(II) complexes onto K-doped polymeric carbon nitride via microwave heating

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ming-Yu Heng, Hong-Lei Shao, Jie-Ting Sun, Qian Huang, Shu-Ling Shen, Guang-Zhi Yang, Yu-Hua Xue, Shu-Ning Xiao
{"title":"Harnessing S-scheme junctions for enhanced CO2 photoreduction: molecular bonding of copper(II) complexes onto K-doped polymeric carbon nitride via microwave heating","authors":"Ming-Yu Heng,&nbsp;Hong-Lei Shao,&nbsp;Jie-Ting Sun,&nbsp;Qian Huang,&nbsp;Shu-Ling Shen,&nbsp;Guang-Zhi Yang,&nbsp;Yu-Hua Xue,&nbsp;Shu-Ning Xiao","doi":"10.1007/s12598-024-03000-4","DOIUrl":null,"url":null,"abstract":"<div><p>Photocatalytic conversion of CO<sub>2</sub> is pivotal for mitigating the global greenhouse effect and fostering sustainable energy development. Nowadays, polymeric carbon nitride (PCN) has gained widespread application in CO<sub>2</sub> solar reduction due to its excellent visible light response, suitable conduction band position, and good cost-effectiveness. However, the amorphous nature and low conductivity of PCN limit its photocatalytic efficiency by leading to low carrier concentrations and facile electron–hole recombination during photocatalysis. Addressing this bottleneck, in this study, potassium-doped PCN (KPCN)/copper(II)-complexed bipyridine hydroxyquinoline carboxylic acid (Cu(II)(bpy)(H<sub>2</sub>hqc)) composite catalysts were synthesized through a multistep microwave heating process. In the composite, the formation of an S-scheme junction facilitates the enrichment of more negative electrons on the conduction band of KPCN via intermolecular electron–hole recombination between Cu(II)(bpy)(H<sub>2</sub>hqc) (CuPyQc) and KPCN, thereby promoting efficient photoreduction of CO<sub>2</sub> to CO. Microwave heating enhances the amidation reaction between these two components, achieving the immobilization of homogeneous molecular catalysts and forming amidation chemical bonds that serve as key channels for the S-scheme charge transfer. This work not only presents a new PCN-based catalytic system for CO<sub>2</sub> reduction applications, but also offers a novel microwave-practical approach for immobilizing homogeneous catalysts.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 2","pages":"1108 - 1121"},"PeriodicalIF":9.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03000-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic conversion of CO2 is pivotal for mitigating the global greenhouse effect and fostering sustainable energy development. Nowadays, polymeric carbon nitride (PCN) has gained widespread application in CO2 solar reduction due to its excellent visible light response, suitable conduction band position, and good cost-effectiveness. However, the amorphous nature and low conductivity of PCN limit its photocatalytic efficiency by leading to low carrier concentrations and facile electron–hole recombination during photocatalysis. Addressing this bottleneck, in this study, potassium-doped PCN (KPCN)/copper(II)-complexed bipyridine hydroxyquinoline carboxylic acid (Cu(II)(bpy)(H2hqc)) composite catalysts were synthesized through a multistep microwave heating process. In the composite, the formation of an S-scheme junction facilitates the enrichment of more negative electrons on the conduction band of KPCN via intermolecular electron–hole recombination between Cu(II)(bpy)(H2hqc) (CuPyQc) and KPCN, thereby promoting efficient photoreduction of CO2 to CO. Microwave heating enhances the amidation reaction between these two components, achieving the immobilization of homogeneous molecular catalysts and forming amidation chemical bonds that serve as key channels for the S-scheme charge transfer. This work not only presents a new PCN-based catalytic system for CO2 reduction applications, but also offers a novel microwave-practical approach for immobilizing homogeneous catalysts.

Graphical abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信