Elemental identification of sealed cargo based on fast neutron activation analysis and artificial neural network

IF 1.5 3区 化学 Q3 CHEMISTRY, ANALYTICAL
Hadi Shahabinejad, Davorin Sudac, Karlo Nad, Isabelle Espagnon, Clotilde de Sainte Foy, Bertrand Perot, Cedric Carasco, Alix Sardet, Edwin Friedmann, Jean Philippe Poli, Jessica Delgado, Felix Pino, Sandra Moretto, Christine Mer, Guillaume Sannie, Jasmina Obhodas
{"title":"Elemental identification of sealed cargo based on fast neutron activation analysis and artificial neural network","authors":"Hadi Shahabinejad,&nbsp;Davorin Sudac,&nbsp;Karlo Nad,&nbsp;Isabelle Espagnon,&nbsp;Clotilde de Sainte Foy,&nbsp;Bertrand Perot,&nbsp;Cedric Carasco,&nbsp;Alix Sardet,&nbsp;Edwin Friedmann,&nbsp;Jean Philippe Poli,&nbsp;Jessica Delgado,&nbsp;Felix Pino,&nbsp;Sandra Moretto,&nbsp;Christine Mer,&nbsp;Guillaume Sannie,&nbsp;Jasmina Obhodas","doi":"10.1007/s10967-025-09991-3","DOIUrl":null,"url":null,"abstract":"<div><p>Securing global trade requires efficient screening of containers for threat materials. This work demonstrates a novel approach combining fast neutron activation analysis and artificial neural network (ANN) to identify elemental composition of sealed cargo, in particular elements carbon, oxygen, and nitrogen, which are the main components of explosives. This study shows that Rapidly Relocatable Tagged Neutron Inspection System in combination with ANN is a potential promising solution for the inspection of sealed containers, allowing precise identification of elements and detection of potential threats without the need to open the containers.</p></div>","PeriodicalId":661,"journal":{"name":"Journal of Radioanalytical and Nuclear Chemistry","volume":"334 2","pages":"1157 - 1166"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radioanalytical and Nuclear Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10967-025-09991-3","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Securing global trade requires efficient screening of containers for threat materials. This work demonstrates a novel approach combining fast neutron activation analysis and artificial neural network (ANN) to identify elemental composition of sealed cargo, in particular elements carbon, oxygen, and nitrogen, which are the main components of explosives. This study shows that Rapidly Relocatable Tagged Neutron Inspection System in combination with ANN is a potential promising solution for the inspection of sealed containers, allowing precise identification of elements and detection of potential threats without the need to open the containers.

Abstract Image

基于快中子活化分析和人工神经网络的密封货物元素识别
确保全球贸易的安全,需要对集装箱进行有效的危险材料筛查。这项工作展示了一种结合快中子活化分析和人工神经网络(ANN)的新方法,以识别密封货物的元素组成,特别是碳、氧和氮元素,这些元素是爆炸物的主要成分。该研究表明,与人工神经网络相结合的快速可重新定位标记中子检测系统是一种潜在的有前途的密封容器检测解决方案,可以在不打开容器的情况下精确识别元素并检测潜在威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
18.80%
发文量
504
审稿时长
2.2 months
期刊介绍: An international periodical publishing original papers, letters, review papers and short communications on nuclear chemistry. The subjects covered include: Nuclear chemistry, Radiochemistry, Radiation chemistry, Radiobiological chemistry, Environmental radiochemistry, Production and control of radioisotopes and labelled compounds, Nuclear power plant chemistry, Nuclear fuel chemistry, Radioanalytical chemistry, Radiation detection and measurement, Nuclear instrumentation and automation, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信