Rashed A. M. Adam, Delvina J. Tarimo, Vusani M. Maphiri, Abdulmajid A. Mirghni, Oladepo Fasakin, Ncholu Manyala
{"title":"Effects of the physisorption properties of human hair-derived activated carbon as a potential electrode for symmetric supercapacitor","authors":"Rashed A. M. Adam, Delvina J. Tarimo, Vusani M. Maphiri, Abdulmajid A. Mirghni, Oladepo Fasakin, Ncholu Manyala","doi":"10.1007/s40243-024-00294-3","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, human hair-derived activated carbon (HH-AC) with remarkable physisorption properties such as high surface area and well-balanced micro- and mesopores, is synthesized by chemical activation method using potassium hydroxide (KOH). The activated carbon is synthesized at different ratio of charred human hair and activator as 1:1, 1:2 and 1:3 for HH AC(11), HH-AC(12) and HH-AC(13), respectively. These activated materials are characterized by a powder X-ray diffraction (XRD), Laser Raman spectroscopy, Scanning electron microscope (SEM), and <span>\\(\\:{\\text{N}}_{2}\\)</span> adsorption/desorption isotherms. To examine the influence of the micro-mesopore ratio with high surface area on supercapacitor behavior, all samples are tested in a three-electrode using 2.5 moles of potassium nitrate (2.5 M KNO<sub>3</sub>) as electrolyte solution. The results show that HH-AC(12) sample which has micro to mesopore-balanced<span>\\(\\:(50:50)\\:\\)</span> exhibited superior electrochemical performance with specific capacitance of <span>\\(\\:215\\:\\text{F}\\:{\\text{g}}^{-1}\\)</span> and <span>\\(\\:125.8\\:\\text{F}\\:{\\text{g}}^{-1}\\)</span> in the negative and positive potential, respectively at <span>\\(\\:1\\:\\text{A}\\:\\:{\\text{g}}^{-1}\\)</span>. The sample HH-AC(11), which is dominated by micropores, showed lower rate capability and specific capacitance despite the huge surface area.Whereas the HH-AC(13) sample with mostly mesopores achieved higher rate capability compared to the others. The HH-AC(12) is further examined in a 2-electrode setup to form a symmetric device. The results show a specific energy of <span>\\(\\:16\\:\\text{W}\\text{h}\\:\\text{k}{\\text{g}}^{-1}\\)</span> and a specific power of <span>\\(\\:375\\:\\text{W}\\:\\text{k}{\\text{g}}^{-1}\\)</span> at <span>\\(\\:0.5\\:\\text{A}\\:{\\text{g}}^{-1}\\)</span>. The device demonstrates outstanding capacitance retention of <span>\\(\\:97\\text{\\%}\\)</span> after 10,000 cycles. Thus, ACs with micro to mesopores-balanced are potential candidates for supercapacitor applications.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00294-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-024-00294-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, human hair-derived activated carbon (HH-AC) with remarkable physisorption properties such as high surface area and well-balanced micro- and mesopores, is synthesized by chemical activation method using potassium hydroxide (KOH). The activated carbon is synthesized at different ratio of charred human hair and activator as 1:1, 1:2 and 1:3 for HH AC(11), HH-AC(12) and HH-AC(13), respectively. These activated materials are characterized by a powder X-ray diffraction (XRD), Laser Raman spectroscopy, Scanning electron microscope (SEM), and \(\:{\text{N}}_{2}\) adsorption/desorption isotherms. To examine the influence of the micro-mesopore ratio with high surface area on supercapacitor behavior, all samples are tested in a three-electrode using 2.5 moles of potassium nitrate (2.5 M KNO3) as electrolyte solution. The results show that HH-AC(12) sample which has micro to mesopore-balanced\(\:(50:50)\:\) exhibited superior electrochemical performance with specific capacitance of \(\:215\:\text{F}\:{\text{g}}^{-1}\) and \(\:125.8\:\text{F}\:{\text{g}}^{-1}\) in the negative and positive potential, respectively at \(\:1\:\text{A}\:\:{\text{g}}^{-1}\). The sample HH-AC(11), which is dominated by micropores, showed lower rate capability and specific capacitance despite the huge surface area.Whereas the HH-AC(13) sample with mostly mesopores achieved higher rate capability compared to the others. The HH-AC(12) is further examined in a 2-electrode setup to form a symmetric device. The results show a specific energy of \(\:16\:\text{W}\text{h}\:\text{k}{\text{g}}^{-1}\) and a specific power of \(\:375\:\text{W}\:\text{k}{\text{g}}^{-1}\) at \(\:0.5\:\text{A}\:{\text{g}}^{-1}\). The device demonstrates outstanding capacitance retention of \(\:97\text{\%}\) after 10,000 cycles. Thus, ACs with micro to mesopores-balanced are potential candidates for supercapacitor applications.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies