Development of Deterministic Reaction Triggering in UF4 Magnesiothermic Reduction

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
JOM Pub Date : 2025-01-13 DOI:10.1007/s11837-024-07075-3
Pasupuleti Kalpana, Sonal Gupta, U. R. Thakkar, Amulya Raina, S. K. Satpati, Rishi Verma
{"title":"Development of Deterministic Reaction Triggering in UF4 Magnesiothermic Reduction","authors":"Pasupuleti Kalpana,&nbsp;Sonal Gupta,&nbsp;U. R. Thakkar,&nbsp;Amulya Raina,&nbsp;S. K. Satpati,&nbsp;Rishi Verma","doi":"10.1007/s11837-024-07075-3","DOIUrl":null,"url":null,"abstract":"<div><p>Uranium metal ingot is routinely produced by magnesiothermic reduction (MTR) at plant scale. In the conventional process, heating of the reaction vessel is continued till self-initiation or self-firing of the reaction occurs. A novel deterministic reaction triggering (DRT) method has been developed for the MTR process on a 5 kg uranium ingot scale, which makes the firing definite and decreases specific energy consumption and batch duration by about 33.8% and 30–50%, respectively, without affecting the process recovery. The pre-heat time and pre-heat temperature required for initiating the external trigger were estimated using COMSOL simulations and thermodynamic evaluation of the final product temperature, respectively. The process recovery with DRT (~93%) was comparable to that of the conventional self-firing process. A well-consolidated uranium ingot with a recovery of about 93% was obtained with 100 ppm Cr and 97 ppm Ni in the scaled up (50 kg) batch by employing deterministic triggering. This DRT method is applicable and useful for similar reaction processes for augmenting process capacity and energy utilization.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"77 3","pages":"1438 - 1451"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11837-024-07075-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-024-07075-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Uranium metal ingot is routinely produced by magnesiothermic reduction (MTR) at plant scale. In the conventional process, heating of the reaction vessel is continued till self-initiation or self-firing of the reaction occurs. A novel deterministic reaction triggering (DRT) method has been developed for the MTR process on a 5 kg uranium ingot scale, which makes the firing definite and decreases specific energy consumption and batch duration by about 33.8% and 30–50%, respectively, without affecting the process recovery. The pre-heat time and pre-heat temperature required for initiating the external trigger were estimated using COMSOL simulations and thermodynamic evaluation of the final product temperature, respectively. The process recovery with DRT (~93%) was comparable to that of the conventional self-firing process. A well-consolidated uranium ingot with a recovery of about 93% was obtained with 100 ppm Cr and 97 ppm Ni in the scaled up (50 kg) batch by employing deterministic triggering. This DRT method is applicable and useful for similar reaction processes for augmenting process capacity and energy utilization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JOM
JOM 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.80%
发文量
540
审稿时长
2.8 months
期刊介绍: JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信