Olga Nechvoglod, Ahmad Ostovari Moghaddam, Svetlana Pratskova, Svetlana Trofimova, Marina Samodurova, Evgeny Trofimov
{"title":"A Review on High-Entropy Alloys Coatings Fabricated by Electrodeposition: The Correlation Between Composition, Properties and Processing Parameters","authors":"Olga Nechvoglod, Ahmad Ostovari Moghaddam, Svetlana Pratskova, Svetlana Trofimova, Marina Samodurova, Evgeny Trofimov","doi":"10.1007/s11837-024-07122-z","DOIUrl":null,"url":null,"abstract":"<div><p>This work provides an overview on the fabrication process, composition and properties of high-entropy alloy (HEA) coatings fabricated by electrodeposition. Special attention is paid to the effect of electrodeposition parameters and electrolyte composition on the microstructure, morphology, and mechanical/functional properties of the HEA coatings. It is demonstrated that the majority of researches has been focused on fabricating CoCrFeMnNi- and AlCrFeMnNi-based HEAs, with the addition of a few other elements by galvanostatic and potentiostatic techniques using both direct and pulsed current deposition modes. The fabricated HEA coatings exhibited different microstructures ranging from amorphous to nanocrystalline structures, exhibiting interesting magnetic, catalytic, and mechanical properties. Furthermore, we show that, while the possibility of fabricating metal matrix nanocomposite coatings using electrodeposition has been demonstrated, the fabricated composite coatings are mainly limited to transition element-based HEAs reinforced by graphene oxide and carbon nanotubes. Finally, several new directions and potential challenges such as electrochemical deposition of refractory HEAs and metal matrix composites reinforced by HEAs or high-entropy ceramics, as well as theoretical aspects of electrodeposition of HEAs and introducing machine learning to speed up the fabrication of novel coatings and optimize the processing parameters, are discussed.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"77 3","pages":"1005 - 1028"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-024-07122-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work provides an overview on the fabrication process, composition and properties of high-entropy alloy (HEA) coatings fabricated by electrodeposition. Special attention is paid to the effect of electrodeposition parameters and electrolyte composition on the microstructure, morphology, and mechanical/functional properties of the HEA coatings. It is demonstrated that the majority of researches has been focused on fabricating CoCrFeMnNi- and AlCrFeMnNi-based HEAs, with the addition of a few other elements by galvanostatic and potentiostatic techniques using both direct and pulsed current deposition modes. The fabricated HEA coatings exhibited different microstructures ranging from amorphous to nanocrystalline structures, exhibiting interesting magnetic, catalytic, and mechanical properties. Furthermore, we show that, while the possibility of fabricating metal matrix nanocomposite coatings using electrodeposition has been demonstrated, the fabricated composite coatings are mainly limited to transition element-based HEAs reinforced by graphene oxide and carbon nanotubes. Finally, several new directions and potential challenges such as electrochemical deposition of refractory HEAs and metal matrix composites reinforced by HEAs or high-entropy ceramics, as well as theoretical aspects of electrodeposition of HEAs and introducing machine learning to speed up the fabrication of novel coatings and optimize the processing parameters, are discussed.
期刊介绍:
JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.